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As long as a branch of science offers an abundance of problems, so long
is it alive; a lack of problems foreshadows extinction or the cessation of
independent development. Just as any human undertaking pursues certain
objects, so also mathematical research requires its problems. It is by the
solution of problems that the investigator tests the temper of his steel; he
finds new methods and new outlooks, and gains a wider and freer horizon.

David Hilbert, Mathematical Problems,

International Congress of Mathematicians,
Paris, 1900.




Apologia

This book has grown out of Graph Theory — An Introductory Course (GT), a book
I wrote about twenty years ago. Although I am still happy to recommend GT for
a fairly fast-paced introduction to the basic results of graph theory, in the light .
of the developments in the past twenty years it seemed desirable to write a more
substantial introduction to graph theory, rather than just a slightly changed new
edition.

In addition to the classical results of the subject from GT, amounting to about
40% of the material, this book contains many beautiful recent results, and also
explores some of the exciting connections with other branches of mathematics that
have come to the fore over the last two decades. Among the new resuits we discuss
in detail are: Szemerédi's Regularity Lemma and its use, Shelah’s extension of the
Hales-Jewett Theorem, the results of Galvin and Thomassen on list colourings, the
Perfect Graph Theorem of Lovasz and Fulkerson, and the precise description of
the phase transition in the random graph process, extending the classical theorems
of Erd6s and Rényi. One whole field that has been brought into the light in recent
years concerns the interplay between electrical networks, random walks on graphs,
and the rapid mixing of Markov chains. Another important connection we present
is between the Tutte polynomial of a graph, the partition functions of theoretical
physics, and the powerful new knot polynomials.

The deepening and broadening of the subject indicated by all the developments
mentioned above is evidence that graph theory has reached a point where it should
be treated on a par with all the well-established disciplines of pure mathematics.
The time has surely now arrived when a rigorous and challenging course on the
subject should be taught in every mathematics department. Another reason why
graph theory demands prominence in a mathematics curriculum is its status as that
branch of pure mathematics which is closest to computer science. This proximity
enriches both disciplines: not only is graph theory fundamental to theoretical
computer science, but problems arising in computer science and other areas of
application greatly influence the direction taken by graph theory. In this book we
shall not stress applications: our treatment of graph theory will be as an exciting
branch of pure mathematics, full of elegant and innovative ideas.




viii Apologia

Graph theory, more than any other branch of mathematics, feeds on problems.
There are a great many significant open problems which arise naturally in the
subject: many of these are simple to state and look innocent but are proving to
be surprisingly hard to resolve. It is no coincidence that Paul Erdds, the greatest
problem-poser the world has ever seen, devoted much of his time to graph theory.
This amazing wealth of open problems is mostly a blessing, but also, to some
extent, a curse. A blessing, because there is a constant flow of exciting problems
stimulating the development of the subject: a curse, because people can be misled
into working on shallow or dead-end problems which, while bearing a superficial
resemblence to important problems, do not really advance the subject.

In contrast to most traditional branches of mathematics, for a thorough ground-
ing in graph theory, absorbing the results and proofs is only half of the battle. It
is rare that a genuine problem in graph theory can be solved by simply applying
an existing theorem, either from graph theory or from outside. More typically,
solving a problem requires a “bare hands” argument together with a known re-
sult with a new twist. More often than not, it turns out that none of the existing
high-powered machinery of mathematics is of any help to us, and nevertheless a
solution emerges. The reader of this book will be exposed to many examples of
this phenomenon, both in the proofs presented in the text and in the exercises.
Needless to say, in graph theory we are just as happy to have powerful tools at
our disposal as in any other branch of mathematics, but our main aim is to solve
the substantial problems of the subject, rather than to build machinery for its own
sake.

Hopefully, the reader will appreciate the beauty and significance of the major
results and their proofs in this book. However, tackling and solving a great many
challenging exercises is an equally vital part of the process of becoming a graph
theorist. To this end, the book contains an unusually large number of exercises:
well over 600 in total. No reader is expected to attempt them all, but in order to
really benefit from the book, the reader is strongly advised to think about a fair
proportion of them. Although some of the exercises are straightforward, most of
them are substantial, and some will stretch even the most able reader.

Outside pure mathematics, problems that arise tend to lack a clear structure
and an obvious line of attack. As such, they are akin to many a problem in graph
theory: their solution is likely to require ingenuity and original thought. Thus the
expertise gained in solving the exercises in this book is likely to pay dividends not
only in graph theory and other branches of mathematics, but also in other scientific
disciplines.

“As long as a branch of science offers an abundance of problems, so long is it
alive”, said David Hilbert in his address to the Congress in Paris in 1900. Judged
by this criterion, graph theory could hardly be more alive.

B. B.
Memphis
March 15, 1998




Preface

Graph theory is a young but rapidly maturing subject. Even during the quarter of
a century that I lectured on it in Cambridge, it changed considerably, and I have
found that there is a clear need for a text which introduces the reader not only to
the well-established results, but to many of the newer developments as well. It is
hoped that this volume will go some way towards satisfying that need.

There is too much here for a single course. However, there are many ways of
using the book for a single-semester course: after a little preparation any chapter
can be included in the material to be covered. Although strictly speaking there are
almost no mathematical prerequisites, the subject matter and the pace of the book
demand mathematical maturity from the student.

Each of the ten chapters consists of about five sections, together with a selection
of exercises, and some bibliographical notes. In the opening sections of a chapter
the material is introduced gently: much of the time results are rather simple, and
the proofs are presented in detail. The later sections are more specialized and
proceed at a brisker pace: the theorems tend to be deeper and their proofs, which
are not always simple, are given rapidly. These sections are for the reader whose
interest in the topic has been excited.

We do not attempt to give an exhaustive list of theorems, but hope to show
how the results come together to form a cohesive theory. In order to preserve
the freshness and elegance of the material, the presentation is not over-pedantic:
occasionally the reader is expected to formalize some details of the argument.
Throughout the book the reader will discover connections with various other
branches of mathematics, like optimization theory, group theory, matrix algebra,
probability theory, logic, and knot theory. Although the reader is not expected to
have intimate knowledgc of these fields, a modest acquaintance with them would
enhance the enjoyment of this book.

The bibliographical notes are far from exhaustive: we are careful in our attribu-
tions of the major results, but beyond that we do little more than give suggestions
for further readings.

A vital feature of the book is that it contains hundreds of exercises. Some are
very simple, and test only the understanding of the concepts, but many go way




X Preface

beyond that, demanding mathematical ingenuity. We have shunned routine drills:
even in the simplest questions the overriding criterion for inclusion was beauty. An
attempt has been made to grade the exercises: those marked by ~ signs are five-
finger exercises, while the ones with T signs need some inventiveness. Solving
an exercise marked with % should give the reader a sense of accomplishment.
Needless to say, this grading is subjective: a reader who has some problems with
a standard exercise may well find a * exercise easy.

The conventions adopted in the book are standard. Thus, Theorem 8 of Chap-
ter IV is referred to as Theorem 8 within the chapter, and as Theorem IV.8
elsewhere. Also, the symbol, [, denotes the end of a proof; we also use it to
indicate the absence of one.

The quality of the book would not have been the same without the valuable
contributions of a host of people, and I thank them all sincerely. The hundreds
of talented and enthusiastic Cambridge students I have lectured and supervised
in graph theory; my past research students and others who taught the subject and
provided useful feedback; my son, Mirk, who typed and retyped the manuscript a
number of times. Several of my past research students were also generous enough
to give the early manuscript a critical reading: [ am particularly grateful to Graham
Brightwell, Yoshiharu Kohayakawa, Imre Leader, Oliver Riordan. Amites Sarkar,
Alexander Scott and Andrew Thomason for their astute comments and perceptive
suggestions. The deficiencies that remain are entirely my fault.

Finally, I would like to thank Springer-Verlag and especially Ina Lindemann,
Anne Fossella and Anthony Guardiola for their care and efficiency in producing
this book.

B. B.
Memphis
March 15, 1998

For help with preparation of the third printing. I would like to thank Richard
Arratia, Peter Magyar, and Oliver Riordan. I am especially gratefui to Don Knuth
for sending me lists of misprints. For the many that undoubtedly remain, I
apologize. Please refer to the website for this book, where I will maintain a
list of further misprints that come to my attention; I'd be grateful for any as-
sistance in making this list as complete as possible. The url for this book is
http://www.msci.memphis.edu/faculty/bollobasb.html

B. B.
Memphis
April 16, 2002




Neque ingenium sine disciplina,
aut disciplina sine ingenio
perfectum artificem potest efficere.

Vitruvius
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I

Fundamentals

The basic concepts of graph theory are extraordinarily simple and can be used
to express problems from many different subjects. The purpose of this chapter is
to familiarize the reader with the terminology and notation that we shall use in
the book. In order to give the reader practice with the definitions, we prove some
simple results as soon as possible. With the exception of those in Section 5, all
the proofs in this chapter are straightforward and could have safely been left to
the reader. Indeed, the adventurous reader may wish to find his own proofs before
reading those we have given, to check that he is on the right track.

The reader is not expected to have complete mastery of this chapter before
sampling the rest of the book; indeed, he is encouraged to skip ahead, since
most of the terminology is self-explanatory. We should add at this stage that the
terminology of graph theory is still not standard, though the one used in this book

is well accepted.

1.1 Definitions

A graph G is an ordered pair of disjoint sets (V, E) such that £ is a subset of
the set V@ of unordered pairs of V. Unless it is explicitly stated otherwise, we
consider only finite graphs, that is, V and E are always finite. The set V is the set
of vertices and E is the set of edges. If G is a graph, then V = V(G) is the vertex
set of G, and E = E(G) is the edge set. An edge {x, y} is said to join the vertices
x and y and is denoted by xy. Thus xy and yx mean exactly the same edge; the
vertices x and v are the endvertices of this edge. If xy € E(G), then x and y are




