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Preface

This book aims to provide a compendium of the key mathematical concepts
and results that are relevant for the theoretical development of functional data
analysis (fda). As such, it is not intended to provide a general introduction to
fda per se and, accordingly, we have not attempted to catalog the volumes of
fda research work that have flowed at a brisk pace into the statistics literature
over the past 15 years or so. Readers might therefore find it helpful to read
the present text alongside other books on fda, such as Ramsay and Silverman
(2005), which provide more thorough and practical developments of the topic.

This project grew out of our own struggle in acquiring the theoretical foun-
dations for fda research in diverse fields of mathematics and statistics. With
that in mind, the book strives to be self-contained. Rigorous proofs are pro-
vided for most of the results that we present. Nonetheless, a solid mathematics
background at a graduate level is needed to be able to appreciate the con-
tent of the text. In particular, the reader is assumed to be familiar with linear
algebra and real analysis and to have taken a course in measure theoretic prob-
ability. With this proviso, the material in the book would be suitable for a
one-semester, special-topics class for advanced graduate students.

Functional data analysis is, from our perspective, the statistical analysis of
sample path data observed from continuous time stochastic processes. Thus,
we are dealing with random functions whose realizations fall into some suit-
able (large) collection of functions. This makes an overview of function space
theory a natural starting point for our treatment of fda. Accordingly, we begin
with that topic in Chapter 2. There we develop essential concepts such as
Sobolev and reproducing kernel Hilbert spaces that play pivotal roles in sub-
sequent chapters. We also lay the foundation that is needed to understand the
essential mathematical properties of bounded operators on Banach and, in
particular, Hilbert spaces.

Our treatment of operator theory is broken into three chapters. The first
of these, Chapter 3, deals with basic concepts such as adjoint, inverse, and
projection operators. Then, Chapter 4 investigates the spectral theory that
underlies compact operators in some detail. Here, we present both the typical
eigenvalue/eigenvector expansion for self-adjoint operators and the somewhat
less common singular value expansion that applies in the non-self-adjoint case
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or, more generally, for operators between two different Hilbert spaces. These
expansions make it possible to develop the concepts of Hilbert—Schmidt and
trace class operators at a level of generality that makes them useful in subse-
quent aspects of the text.

The treatment of principal components analysis in Chapter 9 requires some
understanding of perturbation theory for compact operators. This material is
therefore developed in Chapter 5. As was the case for Chapter 4, we do this
for both the self-adjoint and the-non self-adjoint scenarios. The latter instance
therefore provides an introduction to the less well-documented perturbation
theory for singular values and vectors that, for example, can be employed to
investigate the properties of canonical correlation estimators.

The fact that sample paths must be digitized for storage entails that data
smoothing of some kind often becomes necessary. Smoothing and regulariza-
tion problems also arise naturally from the approximate solution of operator
equations, functional regression, and various other problems that are endemic
to the fda setting. Chapter 6 examines a general abstract smoothing or regu-
larization problem that corresponds to what we call a functional linear model.
An explicit form is derived for the associated estimator of the underlying func-
tional parameter. The problems of computation and regularization parameter
selection are considered for the case of real valued, scalar response data. A
special case of our abstract smoothing scenario leads us back to ordinary
smoothing splines and we spend some time studying their associated prop-
erties as nonparametric regression estimators.

Chapter 7 aims to establish the probabilistic underpinnings of fda. The mean
element, covariance operator, and cross-covariance operators are rigorously
defined here for random elements of a Hilbert space. The fda case where a
random element has a representation as a continuous time stochastic process
is given special treatment that, among other factors, clarifies the relationship
between its covariance operator and covariance kernel. A brief foray into
representation theory produces congruence relationships that prove useful in
Chapter 10. The chapter then concludes with selected aspects of the large
sample theory for Hilbert space valued random elements that includes both a
strong law and central limit theorem.

The large sample behavior of the sample mean element and covariance oper-
ator are studied in Chapter 8. This is relevant for cases where functional data
is completely observed. When meaningful discretization occurs, smoothing
becomes necessary dand we look into the large sample performance of two
estimation schema that can be used for that purpose: namely, local linear
and penalized least-squares smoothing. Chapter 9 is the principal components
counterpart of Chapter 8 in that it investigates the properties of eigenvalues
and eigenfunctions associated with the covariance operator estimators that
were derived in that chapter.
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Chapters 10 and 11 both address bivariate situations. In Chapter 10, the
focus is canonical correlation and this concept is used to study a variety of
fda problems including functional factor analysis and discriminant analysis.
Then, Chapter 11 deals with the problem of functional regression with a
scalar response and functional predictor. An asymptotically, optimal penal-
ized least-squares estimator is investigated in this setting.

We have been fortunate to have talented coworkers and students that have
generously shared their ideas and expertise with us on many occasions.
A nonexhaustive list of such important contributors includes Toshiya
Hoshikawa, Ana Kupresanin, Yehua Li, Heng Lian, Yolanda Munoz-
Maldanado, Rosie Renaut, Hyejin Shin, and Jack Spielberg. We sincerely
appreciate the invaluable help they have provided in bringing this book
to fruition. The inspiration for much of the development in Chapter 10
can be traced to the serendipitous path through academics that brought us
into contact with Anant Kshirsagar and Emanuel Parzen. We gratefully
acknowledge the profound influence these two great scholars have had on
this as well as many other aspects of our writing. TH also wishes to thank
Ross Leadbetter for introducing him to the world of research and Ray Carroll
for his support which has opened doors to many possibilities, including
this book.
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Introduction

Briefly stated, a stochastic process is an indexed collection of random vari-
ables all of which are defined on a common probability space (Q, #, P). If
we denote the index set by E, then this can be described mathematically as

{X(t,w) : t € E,w € Q},

where X(7, -) is a & -measurable function on the sample space €. The w argu-
ment will generally be suppressed and X(z, ) will typically be shortened to
just X(z).

Once the X(r) have been observed for every t € E, the process has been
realized and the resulting collection of real numbers is called a sample path
for the process. Functional data analysis (fda), in the sense of this text, is
concerned with the development of methodology for statistical analysis of
data that represent sample paths of processes for which the index set is some
(closed) interval of the real line; without loss, the interval can be taken as
[0, 1]. This translates into observations that are functions on [0, 1] and data
sets that consist of a collection of such random curves.

From a practical perspective, one cannot actually observe a functional data
set in its entirety; at some point, digitization must occur. Thus, analysis might
be predicated on data of the form :

XGlehj= 1, e Bl =1y 41,

involving n sample paths x;(-),...,x,(-) for some stochastic process with
each sample path only being evaluated at » points in [0, 1]. When viewed from
this perspective, the data is inherently finite dimensional and the temptation
is to treat it as one would data in a multivariate analysis (mva) context.

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators,
First Edition. Tailen Hsing and Randall Eubank.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



2 THEORETICAL FOUNDATIONS OF FUNCTIONAL DATA ANALYSIS

However, for truly functional data, there will be many more “variables™ than
observations; that is, » > n. This leads to drastic ill conditioning of the linear
systems that are commonplace in mva which has consequences that can be
quite profound. For example, Bickel and Levina (2004) showed that a naive
application of multivariate discriminant analysis to functional data can result
in a rule that always classifies by essentially flipping a fair coin regardless of
the underlying population structure.

Rote application of mva methodology is simply not the avenue one should
follow for fda. On the other hand, the basic mva techniques are still mean-
ingful in a certain sense. Data analysis tools such as canonical correlation
analysis, discriminant analysis, factor analysis, multivariate analysis of
variance (MANOVA), and principal components analysis exist because they
provide useful ways to summarize complex data sets as well as carry out
inference about the underlying parent population. In that sense, they remain
conceptually valid in the fda setting even if the specific details for extracting
the relevant information from data require a bit of adjustment. With that in
mind, it is useful to begin by cataloging some of the multivariate methods
and their associated mathematical foundations, thereby providing a roadmap
of interesting avenues for study. This is the subject of the following section.

1.1 Multivariate analysis in a nutshell

mva is a mature area of statistics with a rich history. As a result, we can-
not (and will not attempt to) give an in-depth overview of mva in this text.
Instead, this section contains a terse, mathematical sketch of a few of the
methods that are commonly employed in mva. This will, hopefully, provide
the reader with some intuition concerning the form and structure of analogs
of mva techniques that are used in fda as well as an appreciation for both the
similarities and the differences between the two fields of study. Introductions
to the theory and practice of mva can be found in a myriad of texts includ-
ing Anderson (2003), Gittins (1985), Izenman (2008). Jolliffe (2004), and
Johnson and Wichern (2007).

Let us begin with the basic set up where we have a p-dimensional random

vector X = (X, ... ,X,,)T having (variance-)covariance matrix
H=E[X=m)X-m| (1.1)
with
m=[EX (1.2)

the mean vector for X. Here, E corresponds to mathematical expectation
and v” indicates the transpose of a vector v. The matrix % admits an
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eigenvalue—eigenvector decomposition of the form

P
5 = 0 1T
H = Aee! (1.3)
j=1
for eigenvalues 4, > --- > 4, > 0 and associated orthonormal eigenvectors
: .
ej = (ey,....e;) ,j=1,...,p that satisfy
e’ He, = 1.5,
t of 770

where d;; is 1 or 0 depending on whether or not i and j coincide. This provides
a basis for principal components analysis (pca).

We can use the eigenvectors in (1.3) to define new variables ZJ = ejT(X —m),
which are referred to as principal components. These are linear combinations
of the original variables with the weight or loadings e;; that is applied to X; in
the jth component indicating its importance to Z;; more precisely,

Cov(Z;, X)) = Ae;;.
In fact,

P
X=m+ Y Ze, (1.4)
j=I

as, if F is full rank, ey, ..., e, provide an orthonormal basis for R”; this is
even true when % has less than full rank as e’ X is zero with probability
one when 4; = 0. The implication of (1.4) is that X can be represented as a
weighted sum of the eigenvectors of & with the weights/coefficients being
uncorrelated random variables having variances that are the eigenvalues of %

In practice, one typically retains only some number g < p of the compo-
nents and views them as providing a summary of the (covariance) relationship
between the variables in X. As with any type of summarization, this results
in a loss of information. The extent of this loss can be gauged by the propor-
tion of the total X variance V := trace(%) that is recovered by the principal
components that are retained. In this regard, we know that

V= i A;
=1

while the variance of the jth component is
Var(Z)) = ej'.r‘%’e-

J
= 4.
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Thus, the jth component accounts for 1004; /V percentage of the total vari-
ance and 100 (1 — i»:n A/ V) is the percentage of variability that is not
accounted for by Zi, ..., Z,.

Principal components possess various optimality features such as the one
catalogued in Theorem 1.1.1.

Theorem 1.1.1 Var(Z;) = max, . o7 5, =0,i=1,... j-I  Var(e” X).
The proof of this result is, e.g., a consequence of developments in Section 4.2.
It can be interpreted as saying that the jth principle component is the linear
combination of X that accounts for the maximum amount of the remaining
total variance after removing the portion that was explained by Z,, ..., Z;_,.
The discussion to this point has been concerned- with only the population
aspects of pca. Given a random sample x, ..., x, of observations on X, we
estimate % by the sample covariance matrix

n

Hy=tn-10"Y (5 -%) (6 -F) (1.5)

with
X, = n! in (1.6)

the sample mean vector. As %, is positive semidefinite, it has the eigenvalue—
eigenvector representation

Xy = Z ,{j,,ej,,ejn, (1.7)

where the ¢;, are orthonormal and satisfy

el
m'%fnejn - _11151
This produces the sample principle components g;, = =e; (x x,) for
j=1,...,p with x = (x, ..., x,)T and the associated scores eT(r -X,)i=
I,....n that provide sample mformauon concerning the Z;.

Theorems 9.1.1 and 9.1.2 of Chapter 9 can be used to deduce the large
sample behavior of the sample eigenvalue—eigenvector pairs, (4;,,¢;,).j =
1, ..., r. The limiting distributions of \/_(/1,,1 4;) and \/_( e;, — ¢;) are found
to be normal which provides a foundation for hypothesis testing and interval
estimation.

The next step it to assume that X consists of two subsets of variables
that we indicate by writing X = (X[, X])”, where X, = (X,;,...,X,,)" and
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X; = (X, ..., Xp,)". Questions of interest now concern the relationships that
may exist between X and X,. Our focus will be on those that are manifested
in their covariance structure. For this purpose, we partition the covariance
matrix # for X from (1.1) as

(1.8)

Here, %, %, are the covariance matrices for X,,X,, respectively, and
K=K gl is sometimes called the cross-covariance matrix.

The goal is now to summarize the (cross-)covariance properties of X; and
X,. Analogous to the pca approach, this will be accomplished using linear
combinations of the two random vectors. Specifically, we seek vectors a; €
R” and a, € R? that maximize

Cov’(a'X,.alX,)

. 1.9)
Var (a'X;) Var (a}X,) |

piay,ay) =

This optimization problem can be readily solved with the help of the singular
value decomposition: e.g., Corollary 4.3.2. Assuming that X, X, contain no

redundant variables,/ both %, and %, will be positive-definite with nonsingu-
1/2

lar square roots #,'",i = 1,2. This allows us to write
il Riay)"
prla,ay) = ———, (1.10)
a,a,a,a,
where ; .
Ry =X P H K, 2, (1.11)

a, = %:/za, and a, = .%yzaz. The matrix 2£,, can be viewed as a multivari-
ate analog of the linear correlation coefficient between two variables. Using
the singular value decomposition in Corollary 4.3.2, we can see that (1.10)
is maximized by choosing a,,a, to be the pair of singular vectors a;,, a,,
that correspond to its largest singular value p;. The optimal linear combi-
nations of X, and X, are therefore provided by the vectors a;, = # I"/ 2&,,
and ay = F ;'/ 2(“12 1~ The corresponding random variables U, = a{IX ; and
Uy = ale X5 are called the first canonical variables of the X, and X, spaces,
respectively. They each have unit variance and correlation p,that is referred
to as the first canonical correlation.

The summarization process need not stop after the first canonical variables.
If %, has rank r, then there are actually r — 1 additional canonical variables
that can be found: namely, forj = 2, ..., r, we have

U, =al X (1.12)

J 1j



