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PREFACE

THis volume presents a collection of monographs in the fields of chemical,
physical and thermodynamic problems investigated or investigable experi-

- mentally by shock-tube techniques. In the first part of the volume, includifig

Chapters I, IT and I1I, introductory information on unsteady flow motion
and shock-tube techniques are presented. '

Chapter IV and the following chapters are examples of applications,

describing specific investigations in the fields of chemical physics and thermo-
dynamics where shock-tube techniques have been used. ' '
AnTONIC FERRI
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CHAPTER 1

FLUID DYNAMICS OF
NONSTEADY FLOW

AnToNIO FERRI
Polytechhic Institute of Brooklyn, New York
’ and
Luict G. NaroLITANO
Polytechnic Institute of 3rooklyn, New York
and
University  of Naples
A. INTRODUCTION

In TS chapter, the basic concepts underlying the theoretical treatment of
unsteady, continuous one-dimensional (and quasi-one-dimensional) motion
are reviewed. : .

The subject matter covers a rather large variety of physically-occurring
and practically-interesting flows. In spite of the simplifications introduced
by the assumption of one-dimensionality, theoretical approaches are not
yet capable of describing them in close form, except for a few simple cases.

In view of the complexity of the subject and in an attempt to organize
logically the. content, this work is divided into three main sections. The
first two sections deal with the so-called ideal fluid while the third section
considers deviatiens from this ideal fluid. Throughout the work, the “con-
tinuum”, homogeneity and isotropy assumptions are made and body forces
are considered negligible.

In Section B the fluid is considered to have constant composition and to
be thermally and calorically perfect. The basic equations are first given
under the above-mentioned body of assumptions (Section B.1) and subse-
quently specialized to the one- and quasi-one-dimensional motion of a -
non-viscous, non-conducting fluid (B.2, B. 3).

Characteristic equations are derived for the general case of non-isentropic
motion and pertinent finite differences, and approximate methods of solu-
tion are briefly discussed (B.4). Then specific simple cases of isentropic
motions and simple wave motions are analysed (B.5). Finally, the initial
value problems are investigated (B.6).

In the Section G, the fluid is considered to have variable composition as
a result of chemical reactions occurring during the flow. The basic equations
of a reacting mixture are given under much the same body of assumptions
as in Section C.l. The motion of a non-viscous, non-conducting, non-
diffusing (negligible molecular transports) fluid is presented in detail for
one- and quasi-one-dimensional unsteady flow and pertinent iterative
step-by-step methods of solution outlined (C.2).

2 1



ANTONIO FERRI AND LUIGI G. NAPOLITANO

In Section D, the deviations from ideal-fluid theory are considered relative
to the motion of fluids of constant composition. Viscosity and heat-cohduc-
tion effects (D.1) and real-gas effects (D.2) are considered separately.

A short outline of the mathematical theory of characteristics of a system
of quasi-linear first order partial differential equations is given in Appendix
A. Therein the properties of the characteristic curves and their bearing on
the initial value problems are presented

Thermodynaxmc properties of air in equilibrium at high temperature are
reported in Appendix B.

B. FLUID WITH CONSTANT COMPOSITION

B.l. Basic equations

In this section, the fundamental equations of fluid dynamics will be
given under the followmg assumptions:

(1) The fluid is continuous, homogeneous and isotropic.

(2) The fluid is perfcct By this it is meant that: (a) Intermolecular
forces and molecular size are negligible; (b) The internal energy of the
fluid is a function of temperature only; (c) Spcc1ﬁc heat ca.pacmes are
independent of temperature.

(3) The fluid is in thermodynamic equilibrium, that is, its state is uniquely
determined by local conditions and can be described by any two indepen-
dent parameters, usually chosen among the following: pressure, , density,
p, temperature, T, internal specific energy, U, specific entropy, S.

(4) Body forces are negligible.

The basic unknowns of the problems are the velocity and any three of
the state parameters. The latter are usually taken to be either pressure,
temperature and density; or, pressure, density and entropy.

The four necessary equatlons are given by the equation of state and by
the three equations expressing the fundamental principles of mass, momen-
tum and energy conservation. These equations are mtnnsxcally necessary
and sufficient for obtaining a solution if the motion is everywhere con-
tinuous. Discontinuities might arise in the flow; then this system of equations
is to be integrated by the entropy equation (second law of thermodynamics) .
which assesses the unidirectionality of some types of transformations
(Chapter II).

The basic equations are expressed as follows 1-8*
state equation:

B (PN (S =S\
p = pRT or p.-po(m) cxp( - ) (1.1)
continuity equation (conservation of mass):

P oV .0=0 (1.2)

* All symbols are defined in Appendix C, p. 43.
2



FLUID DYNAMIGCS OF NONSTEADY FLOW

equation of motion (conservation of momentum): _ _
P A VPV T =0 (1.3)

energy equation (conservation of energy):
U, d(1fp) |

| dt—l—p i T:VI):—V.]q (1.4)
entropy equation (Gibbs’ law):
ds )

T & dt + p =t | (1.5)
The time derivatives d/d¢ are substantial derivatives with respect to the
motion of the center of gravity, hence:

d o
dt ~ ot

Two equivalent forms of the state equation are given according to whether
the quantities, 2, 9, p, T, or, v, p, p, S, are taken as the basic unknowns.

The subscript zero mdlcatcs reference conditions. -~

The quantity = is the viscous stress tensor whose components ‘rq are
given, in Cartesian co-ordinates, by:

+0.V (1.6)

, T 2
T,,z_,;(ax;Jr ’)+§p(v.v)a,, | (1.7)
wherein 8¢ is the Kronecher delta.* It has been assumed that no viscous
stresses arise for a deformation consisting of a uniform compression or
expansion only. The second coefficient of viscosity, or bulk viscosity coeffi-
cient, has been accordingly taken to be equal to — % p.

The first two terms on the left-hand side of equation (1.4) represent the
time rate of change of specific internal energy and the time rate at which
reversible work is done, per unit mass, on the particle (d(1/p)/dt < 0) or
by the particle (d(1/p)/d¢ > 0). Time rates are those measured by an
observer fixed with respect to the motion of the center of gravity of the
elementary particle (so-called local observer). The third term, often referred
to as dissipation function, is the time rate at which irreversible work (per
unit mass) is done on the particle. 7, is the heat flow (per unit area and unit
time) given by

= Ja=— AVT (1.8)
If then one uses the expression:? ‘
p‘;‘}_—v Fe=V.QVT) (1.9)

where dQ /d¢ is the time rate at which heat is added (per unit mass) to the

* The Kronecher delta is defined as follows:

Og=1fori=j
Oy=0fori#j

3



ANTONIO FERRI AND LUIGI G. NAPOLITANO

particle, Eq. (1.4) expresses the first law of thermodynamics as formulated
by a local observer fixed with respect to the motion of the center of gravity
of the particle.

By combining Egs. (1.4}, (1.5) and (1. 8), there is obtained:

ds V. (Avn——f Vil % (1.5a)

which can also be written as:
ds N 1 (1 Fa

The second term on the left-hand side of Eq. (1.5b) is the divergence of
the conductive entropy current. This term obviously depends upon the
previously-defined heat flux 7;. The right-hand side of Eq. (1.5b) can be
interpreted as a time rate of “production” of entropy (per unit mass).
Hence, for continuous motion, the only causes of entropy production are
viscosity and conductivity. Each one of these factors will “produce” entropy
at the rates

—LTZVU and —‘Z—q— vT
T
respectively. In accordance with the second law of thermodynamics both
rates are positive.

The applicability of the entropy equation in the form exhibited by Eq.
(1.5) or Eq. (1.5a), to a system wherein gradients of velocity, pressure and
temperature are different from zero can be justified provided the system
itself is not too far from equilibrium conditions.? These conditions exist if
the variations of flow properties, along distances of the same order of magni-
tude as the mean free path, are small. The same limitations hold true for
the motion and energy equations. When the system is far away from equi-
librium additional terms should be added in both equations.?> 8 '

The fundamental set of equations is largely simplified when molecular
transports are considered negligible as compared to the macroscopic bulk
motion. Then v1sc031ty and conductivity can be ncglectcd and the fluid can
be considered non-viscous and non-conducting in all the field with the
exception of localized regions where these effects are taken into account by
introducing phys1cal discontinuities (see Chapter II).

For the motion of a non-viscous, non-conducting fluid the basic equations

reduce to:
p=pRT; p = PO(P/P0)7 exp {(§ — o) /Co} (1.10)
dt Py oV.0=0 C .11
pat—+Vp=0 (1.12)
dt U, p9Up) d(llp) (1.13)
gf 0 , (1.14)
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The entropy production in the continuous region is zero since all the
causes of irreversible processes (i.e. viscosity and heat conduction) have been
assumed zero. '

The system of Eqs. (1.10) through (1.14) is applicable as long as the
motion of the ideal fluid is continuous. In the region of discontinuities the
basic conservation principles can no longer be stated in differential form
and one must resort to'a different procedure. Thé subject will be taken up
in Chapter 2 where the possible occurrence of discontinuity surfaces will be
considered. . ' : ‘

It will be noted, finally, that for continuous motion of an ideal non-
viscous, non-conducting fluid the entropy equation is not an independent
statement but follows directly from the energy equation. Hence, the entropy
equation in the form given by Eq. (1. 14) is often used as the fourth necessary
equation in place of the energy equation. J

An alternate form of the energy Eq. (1.13) is often useful. If

h=U+plp ©(1.15)

is the enthalpy for unit mass (specific enthalpy), combining Eq. (1.13) and
Eq. (1.12) multiplied scalarly by » yields:

d [, b o® o _
p-&(h+§~)—§?_‘o (1.16)
: . » T
B.2. One-dimensional unsieady continuous motion of an ideal fluid |

In one-dimensional unsteady continuous motion all the flow properties
are a function of a single space variable and time. The space variable can
measure either the distance from a plane along an axis, normal to the
plane; the distance from an axis; or the distance from a point. One then
speaks of plane flow, cylindrically-symmetrical flow and spherically-
symmetrical flow, respectively.

Rigorously speaking, plane one-dimensional flow can be termed only the
flow of an ideal fluid in ducts with constant cross-sectional area. In practice,
however, when the cross-sectional area varies slowly and continuously
(that is, without any discontinuity in the first- or higher-order derivatives)
the flow properties can be still considered as constant in any plane normal
to the axis, and function only as a single space variable. This type of motion
is usually referred to as quasi-one-dimensional and will be discussed in B.3.
* In the subject class of flows, it is convenierit to assume p, p, § and u, as
the four basi¢ unknowns. The pertinent set of equations is given by the
state, continuity, motion and entropy equations wherein all the dependent
variables are to be considered functions of one space variable and time.

The fundamental system thus reads:

p = bo(plpo)? exp {(S — S0)/Cv)} (1.17a)
19p , udp , Ou 6 eu _ )
Pt ;5;'{-—3;-!-;—0 (1.17b)

5
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ANTONIO FERRI AND LUIGI G. NAPOLITANO

du o ;
p§+ 3x+ =0 (1.17¢)

+u S=0 O (1.174)

Herem eequals 0, 1, 2 for pIane flow, cyhndncally—symmetncal flow and
sphencally—syxmnetmcal flow, respectively. The space variable x measures
the distance along the axis in plane flow, the distance from the axis of
symmetry in flows with cylindrical symmetry and the radial distance in
spherically symmetrical flows.

Egs. (1.17) form a system of quasi-linear partial-differential equations
of hyperbolic type. The role played for these systems by the characteristic
curves and their importance in relation to initial value problems, approxi-
mate methods of solutions and existence of simple wave flows are briefly
examined in Appendix A. >

Exact solutions of the subject system of equations are available in the
literaturel®-16 for special cases. Their usefulness is, however, limited in
view of their restricted range of applicability. In the most general-case,
one must resort to approximate methods of solution wh1ch are based on the
notion of characteristic curves.

In this section, the characteristic equations will be denved by seeking
linear combinations of the subject differential equations which contain
derivatives of all the unknown functions in one direction only. Such direc-
tions are called, by definition, characteristic directions (see Appendix A).

If density denvates are eliminated from Eq. (1.17b) through the state

equauon and Eq. (1.17d), the following system of three differential equa-
tions is obtained:

op o ou ua? .
i te “zax—_”T‘
2
p+‘° ax+ a: =0 , (1.18)
as '
§+"a=°

wherein the speed of sound a is defined by a2 = (3p/8p),s..°m_,7For an
ideal gas becausc of Eq. (1.17a),

42=‘y%=yzz:r o (1.19)

Adding and subtracting from the co,ntinuify equation the nﬁomentum
equation-multiplied by a yield the following equivalent system:

groetroZimffrurall-—nt.

X
2
ﬁ+(u—a)a—pa‘%+(uea)a—l‘}:—pl:a e (1.20)
as
Bt+ w0

6



FLUID DYNAMICS OF NONSTEADY FLOW

Apparently, these equations contain total derivatives of the unknown
functions along the following directions, respectively:

() g‘;—=u +a (1.21)
(A2) g—: =u—a (1.22)
O T=u (1.23)

Hence, these directions are the required ‘“characteristic directions”,
The rate of change of the unknown functions along these directions are:

d du ua®
along AL; f-}- paa=-—%—e (1.24)

. ) .
+ along das G — p d—:‘=—"';“ e (1.25)
along 2s; g—f =0 (1.26)

 The characteristic directions A; define three families of curves in the
physical plane (x, ¢). By recalling the property of characteristics as loci of
possible discontinuities for the first- and high-order derivatives of the un-
known functions (see Appendix A), it becomes apparent from Egs. (1.21),
(1.22) and (1.23) that such possible discontinuities propagate in three
different ways with respect to the gas.

Discontinuities occurring across the first two families of characteristics
propagate with the local speed of sound with respect to the gas and are
relative to first- (or higher-order) detivatives of pressure and velocity only.
In particular, discontinuities across the first family of characteristics (Eq.
(1.21)) represent waves travelling with the flow and are often referred to
as forward sound (or Mach) waves. Discontinuities across the second family
of characteristics (Eq. (1.22)) travel against the flow and are often called
backward sound (or Mach) waves. Discontinuities occurring across the
third family of characteristics are stationary with respect to the fluid (Eq.
(1.23) describes the path line of a particle) and are relative to first-(or
higher-) order derivatives of the entropy only.

Along each family of characteristics a well-defined relation holds for the
rate of change of the dependent variables. In the literature the corresponding
equations (Eqs. (1.24) to' (1.26)) are indifferently referred to as either
characteristics equations in the (, $) plane or as regularity conditions (see
also Appendix A). Notice that along a path line the regularity condition
imposes the constancy of the entropy. This indeed should have been expected
since the entropy variation of a particle must be zero for a non-viscous,
non-conducting fluid. In the case of an isentropic flow, the entropy being
by hypothesis everywhere constant, the families of characteristics reduce
themselves to the first two families.
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The system of the six total differential equations (1.21) through (1.26)
is completely equivalent to the original system (1.18). Every solution of
the original system satisfies the characteristic equations. Conversely, every
solution of the characteristic system generally satisfies the original system.

B.3. Quasi-one-dimensional unsteady continuous motion of an ideal fluid11-24

The condition that all the flow variables be functions of only one space
co-ordinate is approximately realized in flows within ducts with slowly
varying cross-sectional area. Indeed if the slope of the cross-sectional area
furiction A(x) is not too large and if, in addition, the curvature of the center
line of the duct is not too large compared to the height of the section itself,
the velocity along the normal to the direction of the flow will not change
appreciably in magnitude nor in direction., In this case the axial com-
ponent of the velocity and its derivatives are larger than the transverse-
component and its derivatives by at least one order of magnitude.* It is
then plausible to define at each station x an average value of the velocity
which is constant throughout the section. The averaging process must be
such as to satisfy the continuity equation integrated along the cros$-section’s
height. The flow in these conditions is usually referred to as quasi-one-
dimensional because all the flow properties are assumed to be a function
of only one space co-ordinate. The approximations involved in the mathe-
matical treatment of quasi-one-dimensional flow derive from the averaging
process previously described and from the fact that the averaged constant
flow properties thus derived are substituted in the momentum and entropy
equations.

In this approximation, the flow properties at any point of the flow can
bé expressed as a summation of two parts.

P53, 2) = o) + @63, 2)
u(x, 9,2) = u(x) + evfx,5,2) -
(%9, 2) =p(a) + en(x,, 2)

where the coefficient ¢ is a small number. The quantities p(x), w(x), p(x)
are independent of the co-ordinates y and z, and therefore are constant at
each cross-section 4, and are defined by:

o) = [ [ paa
= [ [t
r(§)=$fpr

* Obviously the regions of the boundary layer in the immediate vicinity of the wall are
to be excluded. Nevertheless if the height of these dissipative regions is much smaller than
the height of the cross-section of the stream tube, then the averaging process described in
the main text is still physically plausible.
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