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Preface

his book, like the first edition, presents the basic

concepts and results of logic: the topics are proofs,

truth, and computability. As before, the presentation
is directed toward the reader with some mathematical back-
ground and interests. In this revised edition, in addition to
numerous “local” changes, there are three “global” ways in
which the presentation has been changed:

First, I have attempted to make the material more ac-
cessible to the typical undergraduate student. In the main
development, I have tried not to take for granted informa-
tion or insights that might be unavailable to a junior-level
mathematics student.

Second, for the instructor who wants to fit the book to his
or her course, the organization has been made more flexible.
Footnotes at the beginning of many of the sections indicate
optional paths the instructor — or the independent reader —
might choose to take.

Third, theoretical computer science has influenced logic
in recent years, and some of that influence is reflected in this
edition. Issues of computability are taken more seriously.
Some material on finite models has been incorporated into
the text.

The book is intended to serve as a textbook for an in-
troductory mathematics course in logic at the junior-senior
level. The objectives are to present the important concepts
and theorems of logic and to explain their significance and
their relationship to the reader’s other mathematical work.

As a text, the book can be used in courses anywhere from
aquarter to a year in length. In one quarter, I generally reach
the material on models of first-order theories (Section 2.6).
The extra time afforded by a semester would permit some
glimpse of undecidability, as in Section 3.0. In a second
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2 Preface

term, the material of Chapter 3 (on undecidability) can be more adequately cov-
ered.

The book is intended for the reader who has not studied logic previously, but who
has some experience in mathematical reasoning. There are no specific prerequisites
aside from a willingness to function at a certain level of abstraction and rigor.
There is the inevitable use of basic set theory. Chapter 0 gives a concise summary
of the set theory used. One should not begin the book by studying this chapter; it is
instead intended for reference if and when the need arises. The instructor can adjust
the amount of set theory employed; for example it is possible to avoid cardinal
numbers completely (at the cost of losing some theorems). The book contains
some examples drawn from abstract algebra. But they are just examples, and are
not essential to the exposition. The later chapters (Chapter 3 and 4) tend to be more
demanding of the reader than are the earlier chapters.

Induction and recursion are given a more extensive discussion (in Section 1.4)
than has been customary. I prefer to give an informal account of these subjects in
lectures and have a precise version in the book rather than to have the situation
reversed.

Exercises are given at the end of nearly all the sections. If the exercise bears a
boldface numeral, then the results of that exercise are used in the exposition in the
text. Unusually challenging exercises are marked with an asterisk.

I cheerfully acknowledge my debt to my teachers, a category in which I include
also those who have been my colleagues or students. I would be pleased to receive
comments and corrections from the users of this book. The Web site for the book
can be found at http://www.math.ucla.edu/"hbe/amil.



Introduction

thought. Or at least that was true originally; as with
other branches of mathematics it has grown beyond
the circumstances of its birth. Symbolic logic is a model
in much the same way that modern probability theory is a
model for situations involving chance and uncertainty.
How are models constructed? You begin with a real-life
object, for example an airplane. Then you select some fea-
tures of this original object to be represented in the model,
for example its shape, and others to be ignored, for example
its size. And then you build an object that is like the original
in some ways (which you call essential) and unlike it in oth-
ers (which you call irrelevant). Whether or not the resulting
model meets its intended purpose will depend largely on
the selection of the properties of the original object to be
represented in the model.
Logic is more abstract than airplanes. The real-life ob-
jects are certain “logically correct” deductions. For example,

S ymbolic logic is a mathematical model of deductive

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

The validity of inferring the third sentence (the conclu-
sion) from the first two (the assumptions) does not depend
on special idiosyncrasies of Socrates. The inference is jus-
tified by the form of the sentences rather than by empirical
facts about mortality. It is not really important here what
“mortal” means; it does matter what “all” means.

Borogoves are mimsy whenever it is brillig.
It is now brillig, and this thing is a borogove.
Hence this thing is mimsy.
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Again we can recognize that the third sentence follows from the first two, even
without the slightest idea of what a mimsy borogove might look like.

Logically correct deductions are of more interest than the above frivolous ex-
amples might suggest. In fact, axiomatic mathematics consists of many such de-
ductions laid end to end. These deductions made by the working mathematician
constitute real-life originals whose features are to be mirrored in our model.

The logical correctness of these deductions is due to their form but is indepen-
dent of their content. This criterion is vague, but it is just this sort of vagueness that
prompts us to turn to mathematical models. A major goal will be to give, within
a model, a precise version of this criterion. The questions (about our model) we
will initially be most concerned with are these:

1. What does it mean for one sentence to “follow logically” from certain others?

2. If a sentence does follow logically from certain others, what methods of
proof might be necessary to establish this fact?

3. Is there a gap between what we can prove in an axiomatic system (say for
the natural numbers) and what is frue about the natural numbers?

4. What is the connection between logic and computability?

Actually we will present two models. The first (sentential logic) will be very
simple and will be woefully inadequate for interesting deductions. Its inadequacy
stems from the fact that it preserves only some crude properties of real-life de-
ductions. The second model (first-order logic) is admirably suited to deductions
encountered in mathematics. When a working mathematician asserts that a par-
ticular sentence follows from the axioms of set theory, he or she means that this
deduction can be translated to one in our model.

This emphasis on mathematics has guided the choice of topics to include. This
book does not venture into many-valued logic, modal logic, or intuitionistic logic,
which represent different selections of properties of real-life deductions.

Thus far we have avoided giving away much information about what our model,
first-order logic, is like. As brief hints, we now give some examples of the expres-
siveness of its formal language. First, take the English sentence that asserts the
set-theoretic principle of extensionality, “If the same things are members of a first
object as are members of a second object, then those objects are the same.” This
can be translated into our first-order language as

VxVy(Vz(zex ez € y) —x=y).

As a second example, we can translate the sentence familiar to calculus students,
“For every positive number ¢ there is a positive number 8 such that for any x whose
distance from a is less than 8, the distance between f(x) and b is less than " as

Ve(le >0— 386 > 0AVx(dxa <8 —dfxb < g))).

We have given some hints as to what we intend to do in this book. We should
also correct some possible misimpressions by saying what we are not going to do.
This book does not propose to teach the reader how to think. The word “logic” is
sometimes used to refer to remedial thinking, but not by us. The reader already
knows how to think. Here are some intriguing concepts to think about.
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Chapter
7E R o

Useful Facts
about Sets

Fe assume that the reader already has
some familiarity with normal everyday
set-theoretic apparatus. Nonetheless, we
give here a brief summary of facts from set theory
we will need; this will at least serve to establish
the notation. It is suggested that the reader, instead
of poring over this chapter at the outset, simply
refer to it if and when issues of a set-theoretic na-
ture arise in later chapters. The author’s favorite
book on set theory is of course his Elements of Set
Mry(seeﬂ:ehstofrefmmatﬂneendofﬂns
- e

First a word about jargon. Throughout the book
we will utilize an assortment of standard mathe-
matical abbreviations. We use “~” to signify the
end of a proof. A sentence “If ..., then ...” will
sometimes be abbreviated “... = ....” We also
have “<=" for the converse implication (for the pe-
culiar way the word “implication” is used in math-
ematics). For “if and only if” we use the shorter
“iff” (this has become part of the mathematical lan-
guage)andthesymbol <.” For the word “there-
fore” we have the “.".” abbreviation.

The notational device that extracts “x # y” as
the denial of “x = y” and “x ¢ y” as the denial
of 'x € y” will be extended to other cases. For

mSectlon 1.2 we define “X = 1”; then

“T B ™ is its denial.
~ Now then, a set is a collection of things, called
_ its members or elements. As usual, we write 7 €
A” to say that ¢ is a member of A, and “z ¢ A” to
say that? is not a member of A. We write “x = y”to

1



A Mathematical Introduction to Logic

mean that x and y are the same object. That is, the expression “x” on the
left of the equals sign is a name for the same object as is named by the
other expression “y.” If A = B, then for any object ¢ it is automatically
true that t € A iff 1 € B. This holds simply because A and B are the
same thing. The converse is the principle of extensionality: If A and B
are sets such that for every object ¢,

te A iff t€B,

then A = B. This reflects the idea of what a set is; a set is determined
just by its members.

A useful operation is that of adjoining one extra object to a set. For
a set A, let A; ¢ be the set whose members are (i) the members of A,
plus (ii) the (possibly new) member . Here ¢ may or may not already
belong to A, and we have

Ayt =AU {1}
using notation defined later, and
teA iff Ajr=A.

One special set is the empty set &, which has no members at all. Any
other set is said to be nonempty. For any object x there is the singleton
set {x} whose only member is x. More generally, for any finite number
X1, ..., X, Of objects there is the set (xy, ..., x,} whose members are
exactly those objects. Observe that {x, y} = {y, x}, as both sets have
exactly the same members. We have only used different expressions to
denote the set. If order matters, we can use ordered pairs (discussed
later).

This notation will be stretched to cover some simple infinite cases.
For example, {0, 1, 2, .. .} is the set N of natural numbers, and {. . ., -2,
—1,0,1,2,...}is the set Z of all integers.

We write “{x | _x_}” for the set of all objects x such that _x__
We will take considerable liberty with this notation. For example,
{tm,n) | m < n in N} is the set of all ordered pairs of natural
numbers for which the first component is smaller than the second. And
{x € A | _x__}is the set of all elements x in A such that _x__

If A is a set all of whose members are also members of B,then Aisa
subset of B, abbreviated “A € B.” Note that any set is a subset of itself.
Also, @ is a subset of every set. (“@ C A” is “vacuously true,” since
the task of verifying, for every member of &, that it also belongs to A
requires doing nothing at all. Or from another point of view, “A € B”
can be false only if some member of A fails to belong to B.If A = &,
this is impossible.) From the set A we can form a new set, the power set
PA of A, whose members are the subsets of A. Thus

PA={x|xC A}
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For example,
Po = {2},
Plo} = {2, (@]}

The union of A and B, AU B, is the set of all things that are members
of A or B (or both). For example, A;t = AU {t}. Similarly, the inter-
section of A and B, AN B, is the set of all things that are members
of both A and B. Sets A and B are disjoint iff their intersection is
empty (i.e., if they have no members in common). A collection of sets
is pairwise disjoint iff any two members of the collection are disjoint.

More generally, consider a set A whose members are themselves sets.
The union, | J A, of A is the set obtained by dumping all the members
of A into a single set:

U A ={x | x belongs to some member of A}.
Similarly for nonempty A,
ﬂ A = {x | x belongs to all members of A}.
For example, if
A ={{0, 1,5}, {1, 6}, {1, 5}},
then
Ua=1{01,5,6},

NA={1}.

Two other examples are

AUB =J(4, B},

UPA = A.

In cases where we have a set A, for each natural number n, the union
of all these sets, | J{A, | n € N}, is usually denoted “(J,.y Ax” OF just
“Un An-”

The ordered pair (x, y) of objects x and y must be defined in such a
way that

(x,y) = {(u,v) iff x=u and y=nv.
Any definition that has this property will do; the standard one is
(x, y) = {{x}, {x, »}}.
For ordered triples we define

(x,y,2) = {(x, y), 2).
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More generally we define n-tuples recursively by

Xty o Xng1) = (X100 Xn)y Xaat)

forn > 1.1Itisconvenient to define also (x) = x; the preceding equation
then holds also for n = 1. S is a finite sequence (or string) of members
of A iff for some positive integer n, we have § = (x;, ..., x,), where
each x; € A. (Finite sequences are often defined to be certain finite
functions, but the above definition is slightly more convenient for us.)
A segment of the finite sequence S = (xy, ..., x,) is a finite sequence

(Xks Xh1s - o s X1y X)), where 1 <k<m=<n.

This segment is an initial segment iff k = 1 and it is proper iff it is
different from S.

If (x1,...,%:) = {¥1,---,ya), then it is easy to see that x; = y;
for 1 < i < n.(The proof uses induction on n and the basic property
of ordered pairs.) But if (x;, ..., Xn) = {(¥1...., ya), then it does not

in general follow that m = n. After all, every ordered triple is also an
ordered pair. But we claim that m and » can be unequal only if some x;
is itself a finite sequence of y;’s, or the other way around:

Lemma OA  Assume that (xq, ..., Xm) = (V1s-evs Yms ooy Ymk)-
Then x; = (y1. ..., Ykt1)-

Proor. We use induction on m. If m = 1, the conclusion is imme-
diate. For the inductive step, assume that (X1, ..., Xm: Xmy1) =
(Y1s -+, Ymak» Yme1+k). Then the first components of this ordered
pair must be equal: (X, ..., Xm) = {(¥1, ...+ Ymsk). NOW apply
the inductive hypothesis. -

For example, suppose that A is a set such that no member of A is a
finite sequence of other members. Then if (x1, ..., Xm) = (¥1, ..., ¥n)
and each x; and y; is in A, then by the above lemma m = n. Whereupon
we have x; = y; as well.

From sets A and B we can form their Cartesian product, the set
A x B of all pairs (x, y) for whichx € A and y € B. A" is the set of
all n-tuples of members of A. For example, A* = (A x A) x A.

A relation R is a set of ordered pairs. For example, the ordering
relation on the numbers 03 is captured by — and in fact is — the set of
ordered pairs

{0, 1), (0,2), (0, 3), (1,2), (1.3), (2,3)}.

The domain of R (written dom R) is the set of all objects x such that
(x,y) € R for some y. The range of R (written ran R) is the set of all
objects y such that (x, y) € R for some x. The union of dom R and
ran R is the field of R, fid R.
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Ann-ary relationon Aisasubsetof A” Ifn > 1,itisarelation. Buta
1-ary (unary) relation on A is simply a subset of A. A particularly simple
binary relation on A is the equality relation {{x, x) | x € A} on A. For
an n-ary relation R on A and subset B of A, the restriction of R to B
is the intersection R N B". For example, the relation displayed above is
the restriction to the set B = {0, 1, 2, 3} of the ordering relation on N.

A function is a relation F with the property of being single-valued:
For each x in dom F there is only one y such that (x, y) € F. As usual,
this unique y is said to be the value F(x) that F assumes at x. (This
notation goes back to Euler. It is a pity he did not choose (x) F' instead;
that would have been helpful for the composition of functions: f o g is
the function whose value at x is f(g(x)), obtained by applying first g
and then f.)

We say that F maps A into B and write

F:A—> B

to mean that F is a function, dom F = A, andran F C B.If in addition
ran F = B, then F maps A onfo B. F is one-to-one iff for each y in
ran F there is only one x such that {x, y) € F.If the pair {x, y) is in
dom F, then we let F(x, y) = F({x, y)). This notation is extended to
n-tuples; F(xi, ..., %,) = F({x1, ..., X))

An n-ary operation on A is a function mapping A" into A. For exam-
ple, addition is a binary operation on N, whereas the successor operation
S (where S(n) = n + 1) is a unary operation on N. If f is an n-ary op-
eration on A, then the restriction of f to a subset B of A is the function
g with domain B" which agrees with f at each point of B". Thus,

g = fN(B" x A).

This g will be an n-ary operation on B iff B is closed under f, in the
sense that f(b;,...,b,) € B whenever each b; is in B. In this case,
g = f N B"*!, in agreement with our definition of the restriction of a
relation. For example, the addition operation on N, which contains such
triples as ((3, 2), 5), is the restriction to N of the addition operation on
R, which contains many more triples.

A particularly simple unary operation on A is the identity function
Id on A, given by the equation

ld(x) =x for x € A.

Thus Id = {{x,x) | x € A}
For a relation R, we define the following:

R is reflexive on A iff (x, x) € R for every x in A.

R is symmetric iff whenever (x, y) € R, then-also (y, x) € R.

R is transitive iff whenever both (x, y) € R and (y, z) € R (if this
ever happens), then also (x, z) € R.
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R satisfies trichotomy on A iff for every x and y in A, exactly one of
the three possibilities, (x, y) € R, x = y, or {y, x) € R, holds.

R is an equivalence relation on A iff R is a binary relation on A that
is reflexive on A, symmetric, and transitive.

R is an ordering relation on A iff R is transitive and satisfies tri-
chotomy on A.

For an equivalence relation R on A we define, for x € A, the equiv-
alence class [x] of x to be {y | {x, y) € R}. The equivalence classes
then partition A. That is, the equivalence classes are subsets of A such
that each member of A belongs to exactly one equivalence class. For x
and y in A,

[x}=1[y] iff {(x,y)eR.

The set N of natural numbers is the set {0, 1,2, ...}. (Natural num-
bers can also be defined set-theoretically, a point that arises briefly in
Section 3.7.) A set A is finite iff there is some one-to-one function f
mapping (for some natural number ) the set A onto {0,1,...,n—1}
(We can think of f as “counting” the members of A.)

A set A is countable iff there is some function mapping A one-to-one
into N. For example, any finite set is obviously countable. Now consider
an infinite countable set A. Then from the given function f mapping
A one-to-one into N, we can extract a function f’ mapping A one-to-
one onto N. For some ag € A, f(ap) is the least member of ran f, let
f'(ap) = 0. In general there is a unique a, € A such that f(a,) is the
(n 4 1)st member of ran f; let f'(a,) = n. Note that A = {ap, a1, --.}.
(We can also think of f' as “counting” the members of A, only now the
counting process is infinite.)

Tueorem OB Let A be a countable set. Then the set of all finite
sequences of members of A is also countable.

Proor. The set S of all such finite sequences can be characterized
by the equation

S = An+1 .

Since A is countable, we have a function f mapping A one-
to-one into N.

The basic idea is to map S one-to-one into N by assigning
to (ag, a1, . . ., Gp) the number 2f@F13f@+ . pl@mtt,
where p,, is the (m + 1)st prime. This suffers from the defect
that this assignment might not be well-defined. For conceivably
there could be {(ag, a1, ..., am) = {(bo, by, ..., by), with a; and
b; in A but with m # n. But this is not serious; just assign to
each member of S the smallest number obtainable in the above
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fashion. This gives us a well-defined map; it is easy to see that it
is one-to-one. —

At times we will speak of trees, which can be useful in providing
intuitive pictures of some situations. But our comments on trees will
always be informal; the theorems and proofs will not rely on trees.
Accordingly, our discussion here of trees will be informal.

For each tree there is an underlying finite partial ordering. We can
draw a picture of this partial ordering R; if (a, b) € R, then we put a
lower than & and connect the points by a line. Pictures of two typical
tree orderings are shown.

AN\, - .\\.

./ \.
’ ./ \‘

(In mathematics, trees grow downward, not upward.) There is always a
highest point in the picture (the roor). Furthermore, while branching is
permitted below some vertex, the points above any given vertex must
lie along a line.

In addition to this underlying finite partial ordering, a tree also has a
labeling function whose domain is the set of vertices. For example, one
tree, in which the labels are natural numbers, is shown.

4

03/0\0 0
./ \. l
0 l. /

5 0

4
7
.

At a few points in the book we will use the axiom of choice. But
usually these uses can be eliminated if the theorems in question are
restricted to countable languages. Of the many equivalent statements of
the axiom of choice, Zorn’s lemma is especially useful.

Say that a collection C of sets is a chain iff for any elements x and
yof C,eitherx C yory C x.

ZORN’s LEMMA  Let A be a set such that for any chain C C A, the set
{JCisin A. Then there is some element m € A which is maximal
in the sense that it is not a subset of any other element of A.
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Cardinal Numbers

All infinite sets are big, but some are bigger than others. (For example,
the set of real numbers is bigger than the set of integers.) Cardinal num-
bers provide a convenient, although not indispensable, way of talking
about the size of sets.

It is natural to say that two sets A and B have the same size iff there is
a function that maps A one-to-one onto B. If A and B are finite, then this
concept is equivalent to the usual one: If you count the members of A
and the members of B, then you get the same number both times. But it
is applicable even to infinite sets A and B, where counting is difficult.

Formally, then, say that A and B are equinumerous (written A ~ B)
iff there is a one-to-one function mapping A onto B. For example, the
set N of natural numbers and the set Z of integers are equinumerous. It
is easy to see that equinumerosity is reflexive, symmetric, and transitive.

For finite sets we can use natural numbers as measures of size. The
same natural number would be assigned to two finite sets (as measures
of their size) iff the sets were equinumerous. Cardinal numbers are
introduced to enable us to generalize this situation to infinite sets.

To each set A we can assign a certain object, the cardinal number
(or cardinality) of A (written card A), in such a way that two sets are
assigned the same cardinality iff they are equinumerous:

card A =card B iff A ~ B. (K)

There are several ways of accomplishing this; the standard one these
days takes card A to be the least ordinal equinumerous with A. (The
success of this definition relies on the axiom of choice.) We will not
discuss ordinals here, since for our purposes it matters very little what
card A actually is, any more than it matters what the number 2 actually
is. What matters most is that (K) holds. It is helpful, however, if for a
finite set A, card A is the natural number telling how many elements A
has. Something is a cardinal number, or simply a cardinal, iff itis card A
for some set A.

(Georg Cantor, who first introduced the concept of cardinal number,
characterized in 1895 the cardinal number of a set M as “the general
concept which, with the help of our active intelligence, comes from the
set M upon abstraction from the nature of its various elements and from
the order of their being given.”)

Say that A is dominated by B (written A < B)iff A is equinumerous
with a subset of B. In other words, A < B iff there is a one-to-one
function mapping A into B. The companion concept for cardinals is

cardA <cardB iff A < B.

(It is easy to see that < is well defined; that is, whether ornot x < A
depends only on the cardinals « and A themselves, and not the choice of



