

CAMBRIDGE LIBRARY COLLECTION

PRACTICAL ESSAY ON THE STRENGTH OF CAST IRON AND OTHER METALS

OLUME 2

LATON HODGKINSON

CAMBRIDGE

Practical Essay on the Strength of Cast Iron and Other Metals

Containing Practical Rules, Tables, and Examples, Founded on a Series of Experiments, with an Extensive Table of the Properties of Materials

VOLUME 2:

EXPERIMENTAL RESEARCHES ON THE STRENGTH
AND OTHER PROPERTIES OF CAST IRON

EARTH HODGKINGON

University Printing House, Cambridge, CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108070355

© in this compilation Cambridge University Press 2014

This edition first published 1846 This digitally printed version 2014

ISBN 978-1-108-07035-5 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Technology

The focus of this series is engineering, broadly construed. It covers technological innovation from a range of periods and cultures, but centres on the technological achievements of the industrial era in the West, particularly in the nineteenth century, as understood by their contemporaries. Infrastructure is one major focus, covering the building of railways and canals, bridges and tunnels, land drainage, the laying of submarine cables, and the construction of docks and lighthouses. Other key topics include developments in industrial and manufacturing fields such as mining technology, the production of iron and steel, the use of steam power, and chemical processes such as photography and textile dyes.

Practical Essay on the Strength of Cast Iron and Other Metals

Although cast iron was used in pagoda construction in ancient China, it was in Britain in the eighteenth century that new methods allowed for its production in quantities that enabled widespread use. An engineer who had educated himself tirelessly in technical subjects from carpentry to architecture, Thomas Tredgold (1788–1829) first published this work in 1822. It served as a standard textbook for British engineers in the early nineteenth century, and several translations extended its influence on the continent. Reissued here in the fourth edition of 1842, edited and annotated by the structural engineer Eaton Hodgkinson (1789–1861), who presents his own research in the second volume, this work addresses both practical and mathematical questions in assessing metallic strength. In Volume 2, benefiting from twenty years of progress since Tredgold's original publication, Hodgkinson provides details of his own advanced experiments.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library and other partner libraries, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection brings back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

EXPERIMENTAL RESEARCHES

ON THE

STRENGTH AND OTHER PROPERTIES

OF

CAST IRON:

WITH THE DEVELOPEMENT OF NEW PRINCIPLES;

CALCULATIONS DEDUCED FROM THEM;

AND

INQUIRIES APPLICABLE TO RIGID AND TENACIOUS BODIES GENERALLY.

BY EATON HODGKINSON, F.R.S.

WITH PLATES AND DIAGRAMS.

London:

JOHN WEALE, 59, HIGH HOLBORN.

M.DCCC.XLVI.

PART II.

EXPERIMENTAL RESEARCHES

ON THE

STRENGTH AND OTHER PROPERTIES OF CAST IRON;

WITH

THE DEVELOPEMENT OF NEW PRINCIPLES; CALCULATIONS DEDUCED FROM THEM; AND INQUIRIES APPLICABLE TO RIGID AND TENACIOUS BODIES GENERALLY.

BY EATON HODGKINSON, F.R.S.

CONTENTS OF PART II.

	PAGE
Introduction. Art. 1	307
Tensile Strength of Cast Iron. Art. 2-13	308
Strength of Cast Iron and other Materials to resist Com-	
pression. Art. 14, 15	315
Resistance of short Masses to a crushing Force. Art. 16-34	ib .
Strength of long Pillars. Art. 35-44	328
Strength of short flexible Pillars. Art. 45-60	337
Comparative Strength of long similar Pillars. Art. 61-68.	345
On the Strength of Pillars of various Forms, and different	
Modes of fixing. Art. 69-73	349
Comparative Strengths of long Pillars of Cast Iron, Wrought	
Iron, Steel, and Timber. Art. 74	351
Power of Pillars to sustain long-continued Pressure. Art. 75	ib.
Euler's Theory of the Strength of Pillars. Art. 76-78	352
Results of Experiments on the Resistance of solid uniform	
Cylinders of Cast Iron to a Force of Compression:	
Table I. Solid Columns with rounded Ends	354
Table II. Solid Columns with flat Ends	359

	PAGE
Table III. Hollow cylindrical Pillars, rounded at the	
Ends	365
Table IV. Hollow Pillars with flat Ends	370
Transverse Strength. Art. 79	373
Long-continued Pressure upon Bars or Beams. Art. 80 .	ib.
Table of Experiments by W. Fairbairn, Esq., on the Strength	
of Bars to resist long-continued Pressure. Art. 81	375
Observations on these Experiments. Art. 82, 83	376
Effects of Temperature on the Strength of Cast Iron.	
Art. 84, 85	377
On the Strength of Cast Iron Bars or Beams under ordinary	
circumstances,—the Time when the Elasticity becomes	
impaired,—and the erroneous Conclusions that have been	
derived from a Mistake as to that Time. Art. 86-91 .	378
Experiments to determine the Transverse Strength of uni-	
form Bars of Cast Iron. Art. 92	386
Table of Experiments by W. Fairbairn, Esq., on the	
Strength of uniform rectangular Bars of Cast Iron.	
Art. 93:	
English Irons	-392
Scotch Irons	393
Welsh Irons	-396
Welsh Anthracite Irons	397
Table of Mean Results of Experiments by the Author on the	
Transverse Strength and Elasticity of uniform Bars of	
Cast Iron, of different Forms of Section. Art. 94:	
Rectangular Bars of English Iron	398
Scotch Iron	399
Bars of Scotch Iron (Carron)	400

CONTENTS OF PART II.	vii
	PAGE
Remarks on the preceding Experiments. Art. 95	401
Table of Abstract of Results obtained from the whole of the	
Experiments, both of Mr. Fairbairn and the Author	404
Defect of Elasticity. Art. 99-107	407
Of the Section of greatest Strength in Cast Iron Beams.	
Art. 108–126	411
Experiments to ascertain the best Forms of Cast Iron	
Beams, and the Strength of such Beams. Art. 127-134.	420
Tabulated Results of the preceding Experiments:	
Table I. Art. 135	424
Table II. Art. 136	432
Table III. Results of Experiments upon Beams of the	
usual Form. Art. 137	436
Remarks upon the Experiments in Table I. Art. 138-141	438
Remarks on Table II. Art. 142, 143	443
Simple Rule for the Strength of Beams. Art. 144-146 .	444
Another approximate Rule. Art. 147-152	446
Experiments on large Beams. Art. 153	454
Experiments on Beams of different Forms. Art. 154-159.	456
Mr. F. Bramah's Experiments on Beams. Art. 160, 161 .	461
Table of Mr. Bramah's Experiments upon solid Cast Iron	
Beams. Art. 162	462
Table of Experiments on Beams differing in Section from	
the former only in having a Portion taken away from the	
Middle. Art. 163	463
Remarks on Mr. Bramah's Experiments. Art. 164	464
Mr. Cubitt's Experiments on Beams. Arts. 165-167	ib.
Table to Mr. Cubitt's Experiments	466
Remarks on Mr. Cubitt's Experiments. Art. 168-179	470

	PAGE
Comparative Strength of Hot and Cold Blast Iron. Art.	
180-183	474
Tables of Experiments on Scotch Iron 478,	479
General Summary of Transverse Strengths, and computed	
Powers to resist Impact. Art. 184-188	480
Theoretical Inquiries with regard to the Strength of Beams.	
Art. 189-194	483
On Resistance to Torsion. Art. 195-199	495
Experiments by Geo. Rennie, Esq., on the Strength of Bars	
of Cast Iron to resist Fracture by Torsion. Art. 200, 201	497
Remarks on the Experiments of Messrs. Rennie, Bramah,	
Dunlop, Bevan, Cauchy, and Savant. Art. 202-215	498

on most of the subjects connected with the strength of materials. Mr. Fairbairn has likewise published the results of a great number of well-conducted experiments upon the transverse strength of bars of cast iron. An abstract, therefore, of the leading experiments made at Mr. Fairbairn's Works, and of those given by Navier, Rennie, Bramah, and others, with theoretical considerations, is all that can be attempted in this Additional Part; pointing out, as I proceed, whatever has a bearing upon the conclusions of Tredgold in the body of the Work.

TENSILE STRENGTH OF CAST IRON.

2. To determine the direct tensile strength of cast iron, I had models made of the form in Plate I. fig. 1.

The castings from these models were very strong at the ends, in order that they might be perfectly rigid there, and had their transverse section, for about a foot in the middle, of the form in fig. 2. This part, which was weaker than the ends, was intended to be torn as under by a force acting perpendicularly through its centre. The ends of the castings had eyes made through them, with a part more prominent than the rest in the middle of the casting, where the eye passed through; fig. 3 represents a section of the eye. The intention of this was that bolts passing through the eyes, and having shackles attached to them, by which to tear

the casting asunder, would rest upon this prominent part in the middle, and therefore upon a point passing in a direct line through the axis of the casting. Several of the castings were torn asunder by the machine for testing iron cables, belonging to the Corporation of Liverpool; the results from these are marked with an asterisk. Others were made in the same manner, but of smaller transverse area; these were broken by means of Mr. Fairbairn's lever (Plate II. fig. 40), which was adapted so as to be well suited for the purpose.

The form of casting here used was chosen to obviate the objections made by Mr. Tredgold (art. 79 and 80) and others against the conclusions of former experimenters. The results are as follow:

3. Results of Experiments on the Tensile Strength of Cast Iron.

Description of iron.	Area of section in inches.	Breaking weight in lbs.	Strength per sq. in. of section.	Mean in the	
Carron iron, No. 2, hot blast Do. do. do. Do. do. do.	4·031 1·7236 1·7037	56,000 22,395 23,219	13,892* 12,993 13,629	tons 13,505 = 6	01/2
Carron iron, No. 2, cold blast Do. do. do.	1·7091 1·6331	28,667 27,099	16,772 16,594 }	16,683 = 7	9
Carron iron, No. 3, hot blast Do. do. do.	1·7023 1·6613	28,667 31,019	16,840 18,671 }	17,755 = 7	181
Carron iron, No. 3, cold blast Do. do. do.	1·6232 1·6677	22,699 24,043	13,984 14,417	14,200 = 6	7
Devon (Scotland) iron, No. 3, hot blast }	4.269	93,520	21,907*	21,907 = 9	15½
Buffery iron, No. 1, hot blast	3.835	51,520	13,434*	13,434 = 6	0
Buffery iron, No. 1, cold blast	4.104	71,680	17,466*	17,466=7	16
Coed-Talon (North Wales) iron, No. 2, hot blast } Do. do. do.	1·586 1·645	25,818 28,086	16,279 17,074 }	16,676 = 7	9
Coed-Talon (North Wales) iron, No. 2, cold blast } Do. do. do.	1·535 1·568	30,102 28,380	19,610 18,100 }	18,855 = 8	8
Low Moor iron (Yorkshire), No. 3, from 5 experiments	1.540	22,385	14,535	14,535 = 6	10
Mixture of iron,—4 experiments further on (art. 7.)				16,542=7	73
Mean from the	Mean from the whole				71/3

- 4. The preceding Table, excepting the two last lines, is extracted from my Report on the strength and other properties of cast iron obtained by hot and cold blast, in vol. vi. of the British Association.
 - 5. In the second volume published by the Asso-

ciation, there are given the results of a few experiments, which I made to determine the tensile strength of cast iron of the following mixture: Blaina No. 2 (Welsh), Blaina No. 3, and W. S. S., No. 3 (Shropshire), each in equal portions.¹

6. In these experiments the intention was to determine, first, the direct tensile strength of a rectangular mass, when drawn through its axis, and next the strength of such a mass, when the force was in the direction of its side. The castings for the experiments on the central strain were of the form previously described; and in the others the force was exactly along the side. The experiments were made by means of the Liverpool testing machine.

Experi- ments.	Area of section in parts of an inch.	Breaking weight in tons.	Strength per square inch.
1	3.012	22.5	7.47
2	2.97	21.0	7.07 mean 7.65=17136 lbs.
3	3.031	25.5	8.41
4	2.95	19.5	6.59 different quality of iron.

7. Force up the middle.

¹ This mixture of iron is the same as I had employed in some experiments on the strength and best forms of cast iron beams, (Memoirs of the Literary and Philosophical Society of Manchester, vol. v., second Series,) of which an account will be given further on.