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PREFACE

It is just about fifty years ago that the mathematical theory of epidemics,
in the modern sense of the phrase, was first started by the work of
William Hamer and Ronald Ross. Considerable progress has since been
made, and this has been accelerated in recent years by the availability
of new mathematical methods of handling random processes. A great
number of interesting and valuable results are widely scattered in the
literature, but there appears to be no single text-book giving a systematic
treatment of the whole field. The present volume attempts to meet this
need. Some selection of the existing material has been inevitable, but
the bibliography has been made as complete as possible so far as pre-
dominantly mathematical references are concerned.

This book is primarily intended for those who wish to learn more
about the use of mathematical and statistical methods in understanding
the mechanisms underlying the spread of infectious diseases. It is, how=
ever, by no means addressed exclusively to professional mathematicians
and statisticians, although some sections rely fairly heavily on rather
specialized techniques. - The theories discussed should be of general
interest to all those who are involved in any form of biometrical investiga-
tion. Moreover, many of the results obtained may well have considerable
relevance to the work of general practitioners, epidemiologists and
Medical Officers of Health, who are all concerned more with the practical
implications of the theory than with its mode of derivation. Those who
do not want to follow the mathematical arguments in detail should be
able to learn enough for their purpose from the general discussions of
the basic models used and of the consequences that flow from them.

The mathematical theory of epidemics appears at present to be develop-
ing fairly rapidly. If it is to continue in the future as a useful branch of
applied mathematics then there must be adequate co-operation between
mathematician and epidemiologist. The theory is only likely to have
valuable applications in so far as it is developed in the context of a proper
understanding of the epidemiological realities. Many of the models used
in this book are of necessity over-simplified: nevertheless, useful results
are already available. Future refinements should enable much further
progress to be made.

I have greatly enjoyed writing this book on a subject which has
fascinated me ever since Dr. A. M. McFarlan first drew my attention to
it at Cambridge in 1948. It is a pleasure therefore to acknowledge my
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PREFACE

indebtedness to Dr. McFarlan for stimulating my interest and for many
useful subsequent discussions. I have also derived great benefit from
continued contacts with Dr. R. E. Hope Simpson, of the Cirencester
Public Health Laboratory, who has not only introduced me to many
practical aspects of field epidemiology but has also very kindly allowed
me to make use of much of his own excellent but unpublished data.

Dr. Hope Simpson also very kindly consented to read and criticize the
first draft of Chapters 1, 2, 3 and 9. A similar service was rendered by
Professor M. S. Bartlett for Chapter 8; by Mr. D. G. Kendall for
Chapters 4 and 5; and by my colleague, Mr. A. M. Walker, who studied
and commented on the whole manuscript. I am most grateful for
helpful and constructive criticism by all these gentlemen, though they are
not, of course, responsible for any errors that remain. I should, in
addition, like to thank Professor Bartlett and Mr. D. G. Kendall for
allowing me to see several of their own papers in draft prior to publication.

I am indebted to the editors of Biometrika and of the Journal of the
Royal Statistical Society, Series B, for allowing me to draw freely on my
own papers in these journals. In particular, the Biometrika Trustees have
kindly permitted the reprinting of Figs. 4.1, 4.2, 5.1, 5.2 and 5.3, which
originally appeared in two papers of mine in Biometrika; and, with the
agreement of Dr. P. Whittle, the use of Fig. 5.4, which is a redrawn
version of a diagram he exhibited in the same journal. I should also
like to thank the University of California Press for permission to make
considerable use of two excellent papers by Professor Bartlett and Mr.
D. G. Kendall in Vol. 4 of the Third Berkeley Symposium on Mathematical
Statistics and Probability. The Appendix Tables were computed on
EDSAC and are published here for the first time by permission of the
Director of the University Mathematical Laboratory, Cambridge.

Finally, I should like to take this opportunity of thanking Mrs, Jill
Esnouf for drawing some of the diagrams, Mrs. Tamara Hazlewood for
her assistance with many of the computations, and last but not least my
secretary, Mrs. Daphne Russen, for the rapid production of an extremely
neat and legible typescript.

NORMAN T. ]J. BAILEY
Oxford,
August 1957
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CHAPTER 1
GENERAL INTRODUCTION

The fearful toll of human life and happiness exacted through the
ages by widespread disease and pestilence affords a spectacle that
is both fascinating and repellent. A recital of the astronomical
numbers of casualties suffered in this way by the human race is
almost stupefying in its effect, and makes the consequences of all
past wars seem almost trivial in comparison. Thus in Europe in
the 14th century there were some 25 million deaths out of a
population of perhaps 100 million from the Black Death alone.
In 1520 the Aztecs lost about half their population of 3% million
from smallpox. The downfall of their empire in 1521 was due
more to smallpox than to Cortes. It has been estimated that
Russia suffered about 25 million cases of typhus in the years from
1918 to 1921 with a death-rate of approximately 10 per cent.
In the world pandemic of influenza in 1919 the total number of
deaths is thought to have been in the region of 20 million over
twelve months. Examples such as these could be multiplied
ad nauseam.

Although modern medicine can now do much to alleviate or
cure many infectious diseases once they have been contracted, by
far the most spectacular results have been in the field of prevention.
Malaria, for example, of which there are still said to be about
100 million attacks per year in India, has been eradicated from
many areas of the world where it was previously endemic by the
relatively simple procedure of draining swamps and marshes. The
elimination of poverty and hunger, and the provision of adequate
social and public health measures such as quarantine, isolation of
infectious cases, provision of clean water supplies, proper disposal
of sewage, vaccination and inoculation, etc. have provided the
main contributions to the fight against disease. Though in the
more advanced communities many diseases once rampant have
virtually disappeared, except perhaps for merely sporadic cases,
others like influenza, poliomyelitis, infective hepatitis and the
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MATHEMATICAL THEORY OF EPIDEMICS

common cold, not only continue to defy prevention but still lack
specific cures. All methods of study are therefore welcome,
whether clinical, biological, ecological or mathematical.

It is, of course, with the last of these approaches that this book
is primarily concerned, though it should be emphasized straight
away that such methods are not entirely independent of other
disciplines. Thus clinical questions of diagnosis, prognosis and
efficacy of treatment often depend on the statistical interpretation
of appropriate data. Advice to patients and their immediate
contacts is considerably influenced by current views as to when
a patient is infectious and by what is known about variations in
the incubation period. The cogency of many epidemiological argu-
ments about, for instance, the possibility of virulence changing
with time, or even the existence of infectiousness itself, may well
depend on whether the effects apparently observed could in fact
be due merely to non-significant chance fluctuations. Again, we
may be interested in developing mathematical models because of
the light they shed on some aspect of the biological mechanism at
work, such as the life-cycle of the parasite involved. Alternatively,
we can use these models to study the large-scale population
phenomena of immediate relevance to any social and public health
measures that might be advocated or undertaken. In particular,
we want to know more about the transmission and spread of
infectious disease, about trying to predict the course of an epi-
demic, and about the recognition of threshold densities of popula-
tion which must be surpassed before a flare-up is likely.

In all these matters. mathematical and statistical investigations
have an important part to play. They originated in the rudi-
mentary medical statistics of Graunt and Petty, who studied the
London Bills of Mortality in the 17th century. Progress was
slow, but the great sanitary revolution of the mid-19th century,
followed by the rise of bacteriology in its second half, had by
1900 created the conditions required for further theoretical develop-
ments of the kind treated in this book. The growing availability
of mortality statistics served to bring into sharper focus the prob-
lems facing public health authorities, while the new discoveries of
bacteriology suggested suitable models for more exact mathe-
matical investigation. Since the turn of the century there has
been continued and accelerated progress in this field. Although it
may never be possible to attain the kind of fine-drawn elaboration
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GENERAL INTRODUCTION

of theory now available in physics, the advancement already
achieved by mathematical investigation in biological subjects such
as evolution and genetics is extremely encouraging.

Most, but not quite all, of the earlier work on epidemics from
about 1900 to 1930 was essentially deterministic in character, that
is, it did not take into account the probability aspects of the pro-
cesses studied. These aspects are of considerable importance in
epidemic theory, even with large populations. The deficiency was
beginning to be made good from about 1930 onwards by the idea
of using chains of binomial distributions to represent successive
crops of new cases. As a result of new developments in the 1940’s
in the handling of stochastic processes further progress became
possible. In recent years new ways have been found of dealing
with the very variable phenomena that occur in practice. With
small groups like individual families it is possible to obtain fairly
homogeneous data from large numbers of such units. Analysis of
epidemic patterns observed on the basis of specific mathematical
models then permits both numerical estimation of parameters of
epidemiological importance, such as chance of infection or length
of incubation period, and statistical tests of how reliably hypo-
thesis and observation agree. With large groups like whole com-
munities the problems are more difficult, especially if we try to
take account of spatial as well as temporal patterns of events.
Nevertheless, appreciable success has already been achieved. The
newer stochastic versions give much more satisfactory explana-
tions than the older deterministic models of such observed
phenomena as undamped epidemic waves in recurrent outbreaks,
and critical community sizes for the existence of fade-out effects.

The purpose of this book is to give a fairly full account of the
mathematical theory of epidemics as it stands at present. Although
purely mathematical points will be dealt with if they are essential
to the main argument, or if they seem likely to be of use in future
developments, the main emphasis will be on the biometrical and
epidemiological aspects of the theory. Whereas some investiga-
tions are pursued in order to gain insight into the general character
of epidemic processes, others are concerned with statistical methods
of analysing specific kinds of observational data. :

Those readers who are primarily mathematicians or statisticians
should find little difficulty anywhere. At the same time it is
hoped that much of the book will also be of interest and value to
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MATHEMATICAL THEORY OF EPIDEMICS

mathematically inclined biologists, epidemiologists and medical
research workers. Since these may not all wish to study the theory
in detail, an attempt has been made in each chapter both to explain
the general methods of investigation adopted and to make clear
the practical consequences that follow. Where possible worked
examples are provided to facilitate applications by the reader to
fresh data. This is particularly important where statistical estima-
tion of parameters is involved and goodness-of-fit tests are to be
performed. It is common nowadays for scientific workers who
are not primarily mathematicians to acquire mastery of specific
techniques like maximum-likelihood scoring. Since this latter pro-
cedure is very frequently required in analysing actual data, full
details are given of the appropriate scores and information func-
tions wherever they are needed.

Chapter 2 gives a historical sketch of the development of the
mathematical theory of epidemics, but some readers may prefer
to omit this on a first reading, returning to it when a fuller
acquaintance with the whole field has been obtained. Except for
those who already have some knowledge of the subject, the remain-
ing chapters should probably be taken in the order in which they
stand. Chapter 3 deals in relatively non-technical language with
epidemiological principles in so far as they are required for a
proper appreciation of the mathematical theories developed in this
book. Standard text-books should be consulted for specialized
accounts. Deterministic models of the ‘continuous-infection’ type
are introduced in Chapter 4, and their stochastic counterparts are
treated in Chapter 5. The chain-binomial type of probability
model is discussed in the next chapter, and this is followed in
Chapter 7 by an extension which attempts to provide statistical
estimates of latent and infectious periods. Chapter 8 then returns
to population problems and uses the models of Chapters 4 and 5
to study recurrent epidemics and endemic states. The problem of
detecting infectiousness is dealt with in Chapter 9. Finally, in
Chapter 10 there is a short survey of the results so far obtained in
mathematical epidemic theory, together with some remarks on the
prospects for further research.

It seems quite probable to the writer that considerable advances
in mathematical epidemiology will be made in the not very distant
future. If these expectations are realized, the results obtained are
likely to be of great importance for the prevention of infectious
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GENERAL INTRODUCTION

disease. At one end of the scale we may look for a greater under-
standing of the detailed processes involved in the transmission of
infection; while at the other end further knowledge of large-scale
phenomena will have an important bearing on problems facing
public health authorities, in so far as it will facilitate prediction
of the epidemiological consequences of proposed administrative
measures.

Such applications could be of immense value to the community
if wisely employed. However, it is not perhaps entirely inappro-
priate here to point out what is no doubt already realized by certain
government departments. Progress in understanding the nature
of epidemic processes will not only assist the prevention of infectious
disease, but will also increase the power and scope of the deliberately
organized outbreaks contemplated by specialists in bacteriological
warfare. Although decisions to prosecute such researches must
rest primarily with the community as a whole, or at least with its
elected representatives, it is the duty of responsible scientists
working in special fields to point out to the general public the
risks, if any, inherent in their activities.



CHAPTER 2

HISTORICAL SKETCH OF MATHEMATICAL
EPIDEMIOLOGY

In this chapter it is proposed to give a short historical account of
the development of mathematical theories of the spread of epidemic
diseases. It is hoped that this will enable the detailed mathematical
discussions appearing later to be seen in perspective, and that a
broad view will facilitate the choice of problems for further research.
Some readers may prefer to go straight on to the mathematics and
return to this chapter later. There is no reason why this should
not be done, though as already mentioned the remaining chapters
should probably be taken in the order in which they appear,
except perhaps by those readers who are to some extent already
acquainted with the subject.

2.1 The beginnings

Recorded accounts of epidemic outbreaks and speculation as to
possible causes go back at least as far as the ancient Greeks, e.g.
the Epidemics of Hippocrates (459-377 B.c.), but genuine progress
in epidemiology was hardly forthcoming until the 19th century.
The spectacular rise of bacteriological science in the second half
of that century, due to the researches of Pasteur (1822-95) and
Koch (1843-1910), was perhaps the outstanding feature of the
commencement of modern scientific achievement in this field.
Nevertheless, some progress had already been made on a less
fundamental level in the statistical appraisal of records showing
the incidence and locality of known cases of disease. Indeed, men
like John Graunt (1620-74) and William Petty (1623-87) had
in the 17th century paid considerable attention to the London
Bills of Mortality. Their work may be taken to mark the beginning
of vital and medical statistics and the understanding of large-scale
phenomena connected with disease and mortality, but the time
was not yet ripe for anything approaching a connected theory of
epidemics. In the first place, the requisite mathematical techniques
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were themselves only then in process of development, and in the
second place there were no sufficiently precise hypotheses about
the spread of disease suitable for expression in mathematical terms.
Although a good start was being made in the field of physics,
particularly mechanics and astronomy, nearly 200 years passed
before any real progress was achieved in the biological sphere.
It is true that as early as 1546 Fracastorius had postulated a living
principle of contagion, which could be spread from person to
person. However, it was not until an unmistakable physical basis
for the cause of infectious disease had been established in the
second half of the 19th century that the stage was set for the
development of adequate mathematical theories of large-scale
phenomena, as opposed to purely empirical descriptions.

Even before the fundamental advances in the new science of
bacteriology, extremely valuable work was going on in the field of
what we now call social medicine. By studying the temporal and
spatial pattern of cholera cases, John Snow showed in 1855 that
the disease was being spread by the contamination of water
supplies. In particular there was the celebrated affair of the
Broad Street Pump. Later, in 1873, William Budd established a
similar manner of spread for typhoid. Parallel to these detailed
investigations were the broader studies of statistical returns made
by William Farr (1840), who hoped to discover empirical laws
underlying the waxing and waning of epidemic outbreaks. These
attempts and their later developments are described in the next

section.

2.2 Curve fitting and prediction

Apart from the highly successful ad hoc studies made by men
like Snow and Budd, we have the more deliberate investigation of
pooled statistical returns by Farr. His work was very much in the
spirit of Graunt and Petty, but was mathematically more sophisti-
cated. In the Second Report of the Registrar-General of England
and Wales, Farr (1840) effectively fitted a normal curve to smoothed
quarterly data on deaths from small-pox, assuming the constancy
of ‘second ratios’ of successive pairs of frequenciés. Later in 1866
(letter to London Daily News, 17th February, quoted by Brownlee,
1915b) he attempted to use a similar method, based this time on
the constancy of third ratios, to predict the course of an outbreak
of rinderpest amongst cattle. The curve was fitted to four rising
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successive monthly totals and extrapolated values used for pre-
diction. Although observed and predicted curves were both
bell-shaped, agreement in detail was not very good. Similar curve-
fitting methods used by Evans (1875) on the small-pox outbreak
of 1871-2 also met with little real success.

More intensive studies of the same type were later undertaken
by Brownlee (1906), who fitted various Pearson curves to epidemic
data on many diseases occurring at different times and places.
Further investigations of this type were reported in a series of
papers (Brownlee, 1909 to 1918). These were all largely of an
empirical nature, although to some extent related to the current
ideas of Hamer (1906), mentioned in the next section, which
involved the use of a specific a prior:i model. Such methods, if
successful, would be extremely useful to public health authorities,
but they have now been largely abandoned because of their intrinsic
inaccuracy. All the same, we may still hope that the development
of alternative lines of investigation will eventually permit some
kind of predictions to be made, even if these should be more or
less vague probability statements. .

2.3 Deterministic models

By the end of the 19th century the general mechanism of
epidemic spread, as revealed by bacteriological research, and the
long familiarity with epidemiological data together made possible
developments of a new kind. Hamer (1906) considered that the
course of an epidemic must depend infer alia on the number of
susceptibles and the contact-rate between susceptibles and infec-
tious individuals. The simple mathematical assumptions used by
Hamer are basic to all subsequent deterministic theories, and
indeed appear in probability versions as well, in suitably modified
form. Moreover, by using these ideas in a simple way, Hamer
could deduce the existence of periodic recurrences. This was taken
up again later by Soper (1929), as mentioned below.

In the meantime Ross (1911 and later) was working with a
more developed mathematical model taking into account a whole
set of basic parameters describing various aspects of the trans-
mission of malaria. It is important to notice that although Ross
employed the idea of chance or probability in formulating his basic
equations, these were actually still deterministic in character. This
means that, for such a model, the future state of the epidemic
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HISTORICAL SKETCH OF MATHEMATICAL EPIDEMIOLOGY

process can be determined precisely when we are given the initial
numbers of susceptibles and infectious individuals, together with
the attack-, recovery-, birth- and death-rates. For the first time it
was possible to use a well-organized mathematical theory as a
genuine research tool in epidemiology. Deductions from the theory,
possibly unforeseen and unexpected, could now be tested out in
practice.

More elaborate mathematical studies of the same general type
were later undertaken by Kermack and McKendrick (1927 to
1939). A greater degree of generality was introduced, including
variable rates of infection, recovery, etc. These authors also con-
sidered the problem of endemic disease and related their findings
(see also McKendrick, 1940) to experimental mouse epidemics.
The most outstanding result obtained was, however, the celebrated
threshold theorem, according to which the introduction of infectious
cases into a community of susceptibles would not give rise to an
epidemic outbreak if the density of susceptibles were below a
certain critical value. If, on the other hand, the critical value
were exceeded then there would be an epidemic of magnitude
sufficient to reduce the density of susceptibles as far below the
threshold as it originally was above.

Further deterministic work specifically associated with measles
was carried out by Soper (1929). Although his basic relationship
was written as a difference equation, it was in essence very similar
to the differential equations of other writers. The most important
result heré was the discovery that the basic assumptions entailed,
so far as recurrent epidemics were concerned, a damped train of
harmonic waves. Published data on measles, however, while
exhibiting a marked oscillation in incidence from year to year,
show no tendency to damping. Soper believed, wrongly, that
allowance for an incubation period would remove the damping.
It is the essential failure of such deterministic models to square
with the facts that has led to their abandonment in many quarters
and consequent replacement by corresponding probability, or
stochastic, representations.

2.4 Stochastic models

As epidemiological data became more extensive and on occasion
dealt with much smaller groups than those relevant to returns for
large areas, the elements of chance and variation became ever
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more prominent. This was specially evident when small family or
household groups were contemplated. The need for some kind
of probability model was becoming increasingly necessary.

McKendrick (1926) was apparently the first to publish a
genuinely stochastic treatment of an epidemic process. Whereas
in deterministic models one takes the actual number of new cases
in a short interval of time to be proportional to the numbers of
both susceptibles and infectious cases, as well as to the length of
the interval, McKendrick assumed that the probability of one new
case in a short interval was proportional to the same quantity.
This is a ‘continuous-infection’ model and entails an individual
being himself infectious from the instant he receives infection until
the moment he dies, recovers or is isolated. In the paper quoted,
examples were given of probability distributions for the total
number of cases in a household when infection was introduced
from outside. This brilliant pioneering effort did not unfortunately
attract much attention, and similar models were not again investi-
gated until twenty years later. No doubt the absence of satisfactory
methods of handling such models had much to do with this lapse,
and it is curious to reflect that McKendrick himself subsequently
embarked, with Kermack, on the series of deterministic investiga-
tions already mentioned.

An alternative probability treatment by Greenwood (1931)
appearing five years later did, however, establish itself. Moreover,
similar work was independently in progress in the United States,
where in 1928 Lowell J. Reed and Wade Hampton Frost were
already using the same kind of ideas in lectures and discussions
(see Wilson and Burke, 1942; Abbey, 1952). The new model
assumed that the period of infectiousness was comparatively short
and that the latent and incubation periods could be regarded as
approximately constant. Starting with a single case in a closed
group (or several simultaneously infectious cases), new cases would
then occur in a series of stages or generations. We should, under
suitable conditions, expect the cases occurring at any stage to have
a binomial distribution depending on the numbers of susceptibles
and infectious individuals present at the previous stage. We should
thus have a chain of binomial distributions.

Greenwood’s treatment is fully stochastic in the sense that once
the probability element has been introduced, via the chance of
contact adequate for an infectious person to transmit disease to a

10



