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Preface

Gas turbines are very important components of modern infrastructure and
are widely used in power generation. In particular, gas turbines are used for
propulsion in jet engines that power most commercial and military aircraft.
Faults in gas turbine engines can result in major problems, such as delays
and cancellations of flights. Engine in-flight shutdowns (IFSDs) are par-
ticularly problematic and can have an impact on flight safety. Unscheduled
engine removals add to the cost of air transport.

A systematic analysis of engine data has shown that most engine
malfunction is preceded by a so-called single fault, which is a fault in one
engine module or component. These single faults occur as sharp changes in
measurement deviations in the jet engine, when compared to a baseline good
engine. In this book, we present and illustrate a number of algorithms for
fault diagnosis in gas turbine engines. These methods focus on the aspects of
filtering or cleaning the measurement data and on fault isolation algorithms
that use simple engine models for finding the type of fault in the engine.
Novel methods for detecting the damage by finding the time location of a
sudden change in the signal are also given. These methods include those
based on Kalman filters, neural networks, and fuzzy logic and a hybrid soft
computing approach.

The book provides a discussion of the different methods in data filtering,
trend shift detection, and fault isolation developed over the past decade.
Each method is demonstrated through numerical simulations that can be
easily done by the reader using worksheets such as MS Excel or through
MATLAB®. The book provides a variety of new research tools for use in the
condition monitoring of jet engines. Though the measurements and models
are specific to a turbofan engine, the algorithms given in this book will
be useful to all engineers and scientists working on fault diagnosis of gas
turbine engines. The data cleaning algorithms based on nonlinear signal
processing shown in this book are also applicable to condition and health
monitoring problems in general, and as in all such problems, sharp changes
in measurement data herald the onset of a fault.

This book will be useful for engineers and scientists interested in gas
turbine diagnostics. It will also be of interest to researchers in signal pro-
cessing and those working on the fault isolation of systems. The algorithms
presented in this book have broad appeal and can be used for condition and
health monitoring of a variety of systems.

I acknowledge Dr. Allan Volponi and Hans Depold, Pratt & Whitney,
who introduced me to the field of gas turbine diagnostics. I am grateful to
my students Rajeev Verma, Niranjan Roy, Buddhidipta Dan, Payuna Uday,
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VIN. Guruprakash, and V.P. Surendar for testing the algorithms and
generating the numerical results. I am also grateful to K. Bhanu Priya for
helping typeset the document. Finally, I am grateful to the Indian Institute of
Science for furnishing an ambient atmosphere for doing research.

Prof. Ranjan Ganguli
Bangalore

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
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1

Introduction

Diagnostics of gas turbine engines is important because of the high cost
of engine failure and the possible loss of human life. In this book, we will
focus on aircraft or jet engines, which are a special class of gas turbine
engines. Typically, physical faults in a gas turbine engine include prob-
lems such as erosion, corrosion, fouling, built-up dirt, foreign object dam-
age (FOD), worn seals, burned or bowed blades, etc. These physical faults
can occur individually or in combination and cause changes in perfor-
mance characteristics of the compressors, and in their expansion and
compression efficiencies. In addition, the faults cause changes in the tur-
bine and exhaust system nozzle areas. These changes in the performance
of the gas turbine components result in changes in the measurement
parameters, which are therefore dependent variables. This chapter intro-
duces some basic concepts that are necessary for an understanding of
gas turbine diagnostics. First, the importance of signal processing in
noise removal from measurements is highlighted. Next, the typical gas
turbine diagnostic process is explained. The widely used linear filters
and the median filter are then introduced. This is followed by an outline
of the least-squares approach and the Kalman filter. Finally, the role of
influence coefficients and the basics of vibration-based diagnostics are
highlighted.

1.1 Background

Many problems in jet engines manifest themselves as changes in the gas
path measurements [1-3]. Typical gas path measurements are exhaust gas
temperature (EGT), low rotor speed (N1), high rotor speed (N2), and fuel flow
(WF). These measurements are also called cockpit parameters, as they are
displayed to the pilot. Some newer engines also have additional pressure and
temperature probes between the compressors and turbines. However, the
cockpit parameters are present in both newer and older engines, and there-
fore fault detection and isolation systems should be able to work for older
engines, which are more susceptible to damage. Jet engine gas path analysis
works on deviations in gas path measurements from an undamaged baseline
engine to detect and isolate faults. These deviations in the measurements
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2 Gas Turbine Diagnostics: Signal Processing and Fault Isolation

from baseline are known as measurement deltas and are plotted vs. time,
and the resulting computer graphics (known as trend plots) are used by
power plant engineers to visually analyze the condition of the engine and
its different modules. Unfortunately, noise contaminates the measurement
deltas, thereby reducing the signal-to-noise ratio. This can hide key features
in the signal from a person observing the data. A key objective of gas turbine
diagnostics is to make decisions about the existence and location of faults
from the noisy data.

A typical measurement delta has two main features. The first is because of
long-term deterioration that can be considered to vary in time as a low-degree
polynomial, with a linear approximation being very satisfactory [4, 5]. The
second feature of the measurement delta is sudden step-like changes due
to so-called single faults. Depold and Gass [6] conducted a statistical study
of airline data and discovered that the main cause of many engine in-flight
shutdowns was these single faults, which were preceded by a sharp change
in one or more of the measurement deltas. Such a sharp trend change can
also happen if the engine is repaired and tested on the ground in a test cell.
Therefore, a typical jet engine measurement delta signal can be assumed to
be a linear long-term deterioration along with sudden step changes due to
a single-fault or a repair event.

The power plant engineer does not solely rely on observing trend plots
to monitor the engine condition. Various diagnostic algorithms have been
developed to estimate engine condition and identify faults from the health
signals using weighted least squares [7, 8], Kalman filter [9], neural network
[6, 10-12], fuzzy logic [13], and Bayesian [14] approaches. However, while all
these algorithms attempt to handle uncertainty in the measurement del-
tas, their performance is often degraded as the noise in the data increases.
This is also true for system identification of jet engines [15] that is done
to produce better control and diagnostics models. In addition, these esti-
mation and pattern recognition algorithms are often optimal for Gaussian
noise models and can degrade when non-Gaussian outliers are present in
the data [16].

Classical signal processing has been dominated by the assumption of
a Gaussian random noise model for defining the statistical properties of
a real process. However, many real-world processes are characterized
by impulsive noise that causes sharp spikes and outliers in the data. For
example, data can be corrupted by impulsive noise during acquisition and
transmission through communication channels [17]. Phenomena such
as atmospheric noise is also impulsive in nature. Fault detection and
isolation methods that are optimized for random Gaussian noise can
suffer severe performance degradation under non-Gaussian noise.
Therefore, signal processing of the measured data can be very useful for
improving gas turbine diagnostics. In particular, impulsive noise should
be removed.
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1.2 Signal Processing

In signal processing, filtering methods are used to preprocess the data to
reduce noise. The term noise here is used in a general sense and includes
any corruption to the signal that hinders the pattern recognition or state
estimation process or leads to false artifacts being observed during visu-
alization. Traditionally, smoothing methods used by the gas turbine
industry are moving averages and exponential smoothing [6]. The mov-
ing average is a special case of the finite impulse response (FIR) filter, and
the exponential average is a special case of the infinite impulse response
(IIR) filter. These filters will be explained later in this chapter. Depold and
Gass [6] first addressed the problem of finding a filter that preserves the
sharp trend shifts in gas path measurements due to a single fault. They
showed that the exponential average filter has a faster reaction time than
the widely used 10-point average and is therefore a better filtering method
for processing data prior to trend detection and fault isolation. They also
developed some rules of thumb to remove outliers from gas turbine mea-
surements. These rules were based on the logic that a shift in any one
measurement without shifts in the other measurements would indicate an
outlier.

However, both the FIR and IIR filters are linear filters and remove noise
while blurring the edges in the signal. In addition, the human visual system
is acutely sensitive to high frequency in the spatial form of edges [18]. Most
of the low frequency in an image is discarded by the visual system before
it can even leave the retina. Unfortunately, the presence of sporadic high-
amplitude impulsive noise in a signal can confuse the human visual system
into seeing patterns where none are really present. Such noise can also trig-
ger an automated trend detection system to give a false alarm. Therefore, it is
necessary to remove any such high-amplitude noise while preserving edges
from the measurement deltas before subsequent data processing operations
for fault detection and isolation.

Substantial research efforts have been conducted in the field of image pro-
cessing to find suitable alternatives to linear filters that are robust or resis-
tant to the presence of impulsive noise. Among these works, the approach
that has received the most attention is that of median filters. Median filters
are a well-known and useful class of nonlinear filters in the image process-
ing field [19-24]. They are useful for removing noise while preserving fine
details in the signal. However, they are not well known in engineering health
monitoring applications. Ganguli [25] used FIR-median hybrid (FMH) filters
[20] for removing noise from gas turbine measurements while preserving
trend shifts. In this study, step changes were considered in a constant signal
as a representation of a single-fault event. Results showed that the FMH fil-
ter preserved the sharp trend shifts in the signal while the moving average
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and exponential average filter smoothed the trend shifts. The problem of
deterioration was not addressed. Furthermore, the FMH filter used in this
study required up to 10 points of forward data and therefore had a 10-point
time lag. Since jet engines often get only 1 or 2 points in each flight, the
10-point time lag is very large and is more suitable for engines with online
diagnostics systems or for systems where data are obtained rapidly. The cost
of high-rate data acquisition remains quite high. In applications other than
gas turbine engines, Nounou and Bakshi [26] used the FIR-median hybrid
(FMH) filter to remove noise from chemical process signals. Manders et al.
[27] used a median filter of length 5 to remove noise in temperature data
for monitoring the cooling system of an automobile engine having installed
thermocouples and pressure sensors. Ogaji et al. [28] used FMH filters to
remove noise from data measured by a global positioning system (GPS) that
directly measures relative displacement and position coordinates for a tall
building.

Nonlinear filters are not limited to median type filters. A special class of
neural networks called the autoassociative neural network (AANN) [29, 30]
has been used for noise filtering, using sensor replacement and gross error
detection and identification. Lu et al. [11, 31] used autoassociative neural
networks for noise filtering gas path measurements. The AANN performs
a unitary mapping, which maps the input parameters onto themselves.
The AANN is also capable of removing any outliers in the data, and per-
formed better at preserving trend shifts than the moving average or expo-
nential average filter. To train the AANN, noisy data are input to it and
mapped to noise-free data at the output nodes. The number of input nodes
and output nodes is equal to the number of measurements. The AANN has
an input and output layer, two hidden layers, and a bottleneck layer. Thus,
the data go to the input layer, then a hidden layer, then a bottleneck layer,
followed by a hidden layer and the output layer. Lu et al. [11] used eight
measurement nodes for the hidden layer and five nodes for the bottleneck
layer, resulting in an 8-9-5-9-8 AANN architecture. The neural network
therefore learns the noise characteristics of the data and is trained to give
noise-free data from noisy data. We will discuss the AANN in more detail
in Chapter 9.

Many filtering algorithms use a fixed-noise detection threshold
obtained at a presumed noise density level. For example, wavelet-based
noise removal methods [26, 32, 33] use orthogonal wavelet analysis, which
tinds coefficients related to undesired features in the signal. Nounou and
Bakshi [26] showed that wavelet-based noise removal methods could be
superior to the FMH filter for processing signals with sharp trend shifts.
The wavelet-based noise removal has three parts: (1) orthogonal wavelet
transform, (2) thresholding of wavelet coefficients, and (3) inverse wave-
let transform. By setting to zero the wavelet coefficients at the highest
orthogonal level of decomposition, noise can be removed from the signal.
However, finding a threshold depends on the noise level and nature of
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the noise and is a difficult problem. Neural network-based filtering meth-
ods are also sensitive to the noise levels in the training data. For example,
the AANN used by Lu et al. [11] was trained with representative noisy
data using simulated signals. However, when the noise characteristic
becomes different from that used in algorithm development, which can
happen in practical applications, the performance of these algorithms can
show degradation.

1.3 Typical Gas Turbine Diagnostics

Urban [34] states the scope of gas turbine diagnostics in his research paper
as follows: “Therefore, it follows that if physical problems result in degraded
component performance, which in turn produce changes in the measurable
engine parameter, then it is possible to utilize these measurable changes to
isolate the degraded component characteristics, in whatever combination,
and permit correction of the causative problems.”

Figure 1.1 shows a schematic representation of the gas turbine diagnos-
tics process. The measurement deltas are processed using smoothing algo-
rithms based on moving or exponential averages [6]. In some cases, the
diagnostics function may be completely performed by power plant engi-
neers. In these cases, the measurement deltas are visualized using com-
puter graphics and the power plant engineer uses his or her experience to
detect engine deterioration or faults. In case a fault or severe performance
degradation is detected, the power plant engineer may suggest prognostics
and maintenance action. In other cases, the power plant engineer may also
have access to automated fault detection and isolation software that can
estimate the condition of the different modules and also detect and isolate
other faults. In addition, expert systems may be available for interpreting
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FIGURE 1.1

Schematic representation of gas turbine diagnostics process. (From Ganguli, R., Journal of

Propulsion and Power 19(5):930-937, 2003. With permission.)
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FIGURE 1.2
Schematic representation of gas turbine engine modules and sensor measurements. (From
Ganguli, R., Journal of Propulsion and Power 19(5):930-937, 2003. With permission.)

the output of the fault detection and isolation algorithms for suggesting
maintenance and prognostics action. In general, both the automated and
human components of the diagnostics system should be used for the best
possible decisions.

Figure 1.2 shows a schematic of a turbo engine that has five modules: fan,
low-pressure compressor (LPC), high-pressure compressor (HPC), low-
pressure turbine (LPT), and high-pressure turbine (HPT). Air is sucked
into the engine through the fan and compressed in the LPC and HPC.
Then, the compressed air is mixed with a fuel and burned in the burner.
Following this, the hot gases are passed through the turbines and power is
generated during this process. Finally, the hot gases are sent out through
the exhaust.

Faults in the gas turbine engine cause efficiency deterioration for the
engine modules. The engine state is monitored using at least the four basic
sensors: exhaust gas temperature (EGT), fuel flow (WF), low rotor speed (N1),
and high rotor speed (N2). The measurements that are taken at altitude at a
given temperature are then converted to standard day sea level conditions,
and then the baseline measurement of an undamaged engine at the same
condition (usually from a thermodynamics-based performance model) is
subtracted from the measurements to yield the measurement deltas AEGT,
AWF, AN1, and AN2. The measurement deltas are then used for estimating
the engine state. Various fault isolation algorithms are used to find the mod-
ule where the fault has occurred. These include Kalman filter, neural net-
works, and fuzzy logic-based methods, some of which will be discussed in
later chapters.

We can observe from Figure 1.1 that a key component of the diagnostics
system is the smoothing or filtering function. While much research has been
expended on the fault detection and isolation function, not much work has
been done to improve the data smoothing and filtering function [6, 11, 25, 31].
The next two sections give a brief background on linear filters and the non-
linear median filter. Several variations of the median filter will be discussed
in this book for application to gas turbine diagnostics.
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1.4 Linear Filters

The finite impulse response (FIR) filter can be represented as

y(k)= Zb(i)x(k —it+1) (1)

i=1

where x(k) is the kth input measurement and y(k) is the kth output. N is the
filter length and {b(i)} is the sequence of weighting coefficients, which define
the characteristics of the filter and sum to unity. When all the weights {b(i)}
are equal, the FIR filter reduces to the special case of the mean or average
filter, which is widely used for data smoothing. For example, the 10-point
moving average has the form

y(k)=%(x(k)+x(k-1)+ x(k=2)+-+x(k-9)) (1.2)

Each of the 10 weights for this filter is equal to 1/10.

Exponentially Weighted Moving Average (EWMA) is a popular IIR filter
that smoothes a measured data point x(k) by exponentially averaging it with
all previous measurements y(k-1).

y(k) = ax(k) + (1 —a)y(k - 1) (1.3)

The parameter a is an adjustable smoothing parameter between 0 and 1
with values such as 0.15 and 0.25 being routinely used in applications [6]. The
exponential average filter has memory since it retains the entire time history
by using the output of the last point. While linear filters are often used to
smooth data before fault diagnosis, they can also smooth out important sig-
nal features. This problem is alleviated by the use of nonlinear filters such as
the median filter.

1.5 Median Filters

Several median type filters are discussed in this book in Chapters 24, 6,
and 7. Here, we introduce the standard median filter, which is well known
in image processing.

Standard median (SM) filters are a popular and useful class of nonlinear
filters. The success of median filters is based on two properties: edge pres-
ervation and noise reduction with robustness against impulsive type noise.
Neither property can be achieved by traditional linear filtering without using



