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Preface

The knowledge at which geometry aims is the knowledge of the eternal

(Plato, Republic, VII, 52)

This book focuses on the theory of convex sets and functions, and its con-
nections with a number of topics that span a broad range from continuous
to discrete optimization. These topics include Lagrange multiplier theory,
Lagrangian and conjugate/Fenchel duality, minimax theory, and nondiffer-
entiable optimization.

The book evolved from a set of lecture notes for a graduate course at
M.IT. It is widely recognized that, aside from being an eminently useful
subject in engineering, operations research, and economics, convexity is an
excellent vehicle for assimilating some of the basic concepts of real anal-
ysis within an intuitive geometrical setting. Unfortunately, the subject’s
coverage in academic curricula is scant and incidental. We believe that at
least part of the reason is the shortage of textbooks that are suitable for
classroom instruction, particularly for nonmathematics majors. We have
therefore tried to make convex analysis accessible to a broader audience
by emphasizing its geometrical character, while maintaining mathematical
rigor. We have included as many insightful illustrations as possible, and we
have used geometric visualization as a principal tool for maintaining the
students’ interest in mathematical proofs.

Our treatment of convexity theory is quite comprehensive, with all
major aspects of the subject receiving substantial treatment. The math-
ematical prerequisites are a course in linear algebra and a course in real
analysis in finite dimensional spaces (which is the exclusive setting of the
book). A summary of this material, without proofs, is provided in Section
1.1.

The coverage of the theory has been significantly extended in the ex-
ercises, which represent a major component of the book. Detailed solutions

xiii



xiv Preface

of all the exercises (nearly 200 pages) are internet-posted in the book’s www
page
http://www.athenasc.com/convexity.html

Some of the exercises may be attempted by the reader without looking at
the solutions, while others are challenging but may be solved by the ad-
vanced reader with the assistance of hints. Still other exercises represent
substantial theoretical results, and in some cases include new and unpub-
lished research. Readers and instructors should decide for themselves how
to make best use of the internet-posted solutions.

An important part of our approach has been to maintain a close link
between the theoretical treatment of convexity and its application to op-
timization. For example, in Chapter 2, after the development of some of
the basic facts about convexity, we discuss some of their applications to
optimization and saddle point theory; in Chapter 3, after the discussion
of polyhedral convexity, we discuss its application in linear and integer
programming; and in Chapter 4, after the discussion of subgradients, we
discuss their use in optimality conditions. We follow this style in the re-
maining chapters, although having developed in Chapters 1-4 most of the
needed convexity theory, the discussion in the subsequent chapters is more
heavily weighted towards optimization.

The chart of the opposite page illustrates the main topics covered
in the book, and their interrelations. At the top level, we have the most
basic concepts of convexity theory, which are covered in Chapter 1. At the
middle level, we have fundamental topics of optimization, such as existence
and characterization of solutions, and minimax theory, together with some
supporting convexity concepts such as hyperplane separation, polyhedral
sets, and subdifferentiability (Chapters 2-4). At the lowest level, we have
the core issues of convex optimization: Lagrange multipliers, Lagrange and
Fenchel duality, and numerical dual optimization (Chapters 5-8).

An instructor who wishes to teach a course from the book has a choice
between several different plans. One possibility is to cover in detail just
the first four chapters, perhaps augmented with some selected sections from
the remainder of the book, such as the first section of Chapter 7, which
deals with conjugate convex functions. The idea here is to concentrate on
convex analysis and illustrate its application to minimax theory through
the minimax theorems of Chapters 2 and 3, and to constrained optimiza-
tion theory through the Nonlinear Farkas’ Lemma of Chapter 3 and the
optimality conditions of Chapter 4. An alternative plan is to cover Chap-
ters 1-4 in less detail in order to allow some time for Lagrange multiplier
theory and computational methods. Other plans may also be devised, pos-
sibly including some applications or some additional theoretical topics of
the instructor’s choice.

While the subject of the book is classical, the treatment of several of
its important topics is new and in some cases relies on new research. In
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particular, our new lines of analysis include:

(a) A unified development of minimax theory and constrained optimiza-

tion duality as special cases of the duality between two simple ge-
ometrical problems: the min common point problem and the max
crossing point problem. Here, by minimax theory, we mean the anal-
ysis relating to the minimax equality

inf sup ¢(z, z) = sup inf ¢(z, 2),
r€X 2€2 2€Z zeX

and the attainment of the “inf’ and the “sup.” By constrained opti-
mization theory, we mean the analysis of problems such as

minimize f(z)

subject to r € X, gi(z) <0, j=1,...,r

and issues such as the existence of optimal solutions and Lagrange
multipliers, and the absence of a duality gap [equality of the opti-
mal value of the above problem and the optimal value of an associ-
ated dual problem, obtained by assigning multipliers to the inequality

constraints g;(z) < 0}.

A unification of conditions for existence of solutions of convex op-
timization problems, conditions for the minimax equality to hold,
and conditions for the absence of a duality gap in constrained opti-
mization. This unification is based on conditions guaranteeing that a
nested family of closed convex sets has a nonempty intersection.
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(c) A unification of the major constraint qualifications that guarante‘e
the existence of Lagrange multipliers for nonconvex constrained opti-
mization. This unification is achieved through the notion of constraint
pseudonormality, which is motivated by an enhanced form of the Fritz
John necessary optimality conditions.

(d) The development of incremental subgradient methods for dual opti-
mization, and the analysis of their advantages over classical subgra-
dient methods.

We provide some orientation by informally summarizing the main
ideas of each of the above topics.

Min Common/Max Crossing Duality

In this book, duality theory is captured in two easily visualized problems:
the min common point problem and the max crossing point problem, in-
troduced in Chapter 2. Fundamentally, these problems revolve around the
existence of nonvertical supporting hyperplanes to convex sets that are un-
bounded from above along the vertical axis. When properly specialized,
this turns out to be the critical issue in constrained optimization duality
and saddle point/minimax theory, under standard convexity and/or con-
cavity assumptions.

The salient feature of the min common/max crossing framework is its
simple geometry, in the context of which the fundamental constraint qual-
ifications needed for strong duality theorems are visually apparent, and
admit straightforward proofs. This allows the development of duality the-
ory in a unified way: first within the min common/max crossing framework
in Chapters 2 and 3, and then by specialization, to saddle point and min-
imax theory in Chapters 2 and 3, and to optimization duality in Chapter
6. All of the major duality theorems discussed in this book are derived in
this way, including the principal Lagrange multiplier and Fenchel duality
theorems for convex programming, and the von Neuman Theorem for zero
sum games.

From an instructional point of view, it is particularly desirable to
unify constrained optimization duality and saddle point/minimax theory
(under convexity/concavity assumptions). Their connection is well known,
but it is hard to understand beyond a superficial level, because there is not
enough overlap between the two theories to develop one in terms of the
other. In our approach, rather than trying to build a closer connection be-
tween constrained optimization duality and saddle point /minimax theory,
we show how they both stem from a common geometrical root: the min
common/max crossing duality.

We note that the constructions involved in the min common and max
crossing problems arise in the theories of subgradients, conjugate convex
functions, and duality. As such they are implicit in several earlier analy-
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ses; in fact they have been employed for visualization purposes in the first
author’s nonlinear programming textbook [Ber99]. However, the two prob-
lems have not been used as a unifying theoretical framework for constrained
optimization duality, saddle point theory, or other contexts, except implic-
itly through the theory of conjugate convex functions, and the complicated
and specialized machinery of conjugate saddle functions. Pedagogically, it
appears desirable to postpone the introduction of conjugacy theory until it
is needed for the limited purposes of Fenchel duality (Chapter 7), and to
bypass altogether conjugate saddle function theory, which is what we have
done.

Existence of Solutions and Strong Duality

We show that under convexity assumptions, several fundamental issues in
optimization are intimately related. In particular, we give a unified analysis
of conditions for optimal solutions to exist, for the minimax equality to
hold, and for the absence of a duality gap in constrained optimization.

To provide a sense of the main idea, we note that given a constrained
optimization problem, lower semicontinuity of the cost function and com-
pactness of the constraint set guarantee the existence of an optimal solu-
tion (the Weierstrass Theorem). On the other hand, the same conditions
plus convexity of the cost and constraint functions guarantee not only the
existence of an optimal solution, but also the absence of a duality gap.
This is not a coincidence, because as it turns out, the conditions for both
cases critically rely on the same fundamental properties of compact sets,
namely that the intersection of a nested family of nonempty compact sets
is nonempty and compact, and that the projections of compact sets on any
subspace are compact.

In our analysis, we extend this line of reasoning under a variety of as-
sumptions relating to convexity, directions of recession, polyhedral sets, and
special types of sets specified by quadratic and other types of inequalities.
The assumptions are used to establish results asserting that the intersection
of a nested family of closed convex sets is nonempty, and that the function
f(z) = inf; F(z, z), obtained by partial minimization of a convex function
F', is lower semicontinuous. These results are translated in turn to a broad
variety of conditions that guarantee the existence of optimal solutions, the
minimax equality, and the absence of a duality gap.

Pseudonormality and Lagrange Multipliers

In Chapter 5, we discuss Lagrange multiplier theory in the context of opti-
mization of a smooth cost function, sub ject to smooth equality and inequal-
ity constraints, as well as an additional set constraint. Our treatment of
Lagrange multipliers is new, and aims to generalize, unify, and streamline
the theory of constraint qualifications.
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The starting point for our development is an enhanced set of neces-
sary conditions of the Fritz John type, that are sharper than the classical
Karush-Kuhn-Tucker conditions (they include extra conditions, which may
narrow down the field of candidate local minima). They are also more
general in that they apply when there is an abstract (possibly nonconvex)
set constraint, in addition to the equality and inequality constraints. To
achieve this level of generality, we bring to bear notions of nonsmooth anal-
ysis, and we find that the notion of regularity of the abstract constraint
set provides the critical distinction between problems that do and do not
admit a satisfactory theory.

Fundamentally, Lagrange multiplier theory should aim to identify the
essential constraint structure that guarantees the existence of Lagrange
multipliers. For smooth problems with equality and inequality constraints,
but no abstract set constraint, this essential structure is captured by the
classical notion of quasiregularity (the tangent cone at a given feasible
point is equal to the cone of first order feasible variations). However, in
the presence of an additional set constraint, the notion of quasiregularity
breaks down as a viable unification vehicle. Our development introduces
the notion of pseudonormality as a substitute for quasiregularity for the
case of an abstract set constraint. Pseudonormality unifies and expands
the major constraint qualifications, and simplifies the proofs of Lagrange
multiplier theorems. In the case of equality constraints only, pseudonor-
mality is implied by either one of two alternative constraint qualifications:
the linear independendence of the constraint gradients and the linearity
of the constraint functions. In fact, in this case, pseudonormality is not
much different than the union of these two constraint qualifications. How-
ever, pseudonormality is a meaningful unifying property even in the case
of an additional set constraint, where the classical proof arguments based
on quasiregularity fail. Pseudonormality also provides the connecting link
between constraint qualifications and the theory of exact penalty functions.

An interesting byproduct of our analysis is a taxonomy of different
types of Lagrange multipliers for problems with nonunique Lagrange mul-
tipliers. Under some convexity assumptions, we show that if there exists at
least one Lagrange multiplier vector, there exists at least one of a special
type, called informative, which has nice sensitivity properties. The nonzero
components of such a multiplier vector identify the constraints that need
to be violated in order to improve the optimal cost function value. Further-
more, a particular informative Lagrange multiplier vector characterizes the
direction of steepest rate of improvement of the cost function for a given
level of the norm of the constraint violation. Along that direction, the
equality and inequality constraints are violated consistently with the signs
of the corresponding multipliers.

The theory of enhanced Fritz John conditions and pseudonormality
are extended in Chapter 6 to the case of a convex programming problem,
without assuming the existence of an optimal solution or the absence of
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a duality gap. They form the basis for a new line of analysis for assert-
ing the existence of informative multipliers under the standard constraint

qualifications.
Incremental Subgradient Methods

In Chapter 8, we discuss one of the most important uses of duality: the
numerical solution of dual problems, often in the context of discrete opti-
mization and the method of branch-and-bound. These dual problems are
often nondifferentiable and have special structure. Subgradient methods
have been among the most popular for the solution of these problems, but
they often suffer from slow convergence.

We introduce incremental subgradient methods, which aim to acceler-
ate the convergence by exploiting the additive structure that a dual problem
often inherits from properties of its primal problem, such as separability.
In particular, for the common case where the dual function is the sum of
a large number of component functions, incremental methods consist of a
sequence of incremental steps, each involving a single component of the
dual function, rather than the sum of all components.

Our analysis aims to identify effective variants of incremental meth-
ods, and to quantify their advantages over the standard subgradient meth-
ods. An important question is the selection of the order in which the
components are selected for iteration. A particularly interesting variant
uses randomization of the order to resolve a worst-case complexity bottle-
neck associated with the natural deterministic order. According to both
analysis and experiment, this randomized variant performs substantially
better than the standard subgradient methods for large scale problems
that typically arise in the context of duality. The randomized variant is
also particularly well-suited for parallel, possibly asynchronous, implemen-
tation, and is the only available method, to our knowledge, that can be
used efficiently within this context.

We are thankful to a few persons for their contributions to the book.
Several colleagues contributed information, suggestions, and insights. We
would like to single out Paul Tseng, who was extraordinarily helpful by
proofreading portions of the book, and collaborating with us on several
research topics, including the Fritz John theory of Sections 5.7 and 6.6.
We would also like to thank Xin Chen and Janey Yu, who gave us valuable
feedback and some specific suggestions. Finally, we wish to express our
appreciation for the stimulating environment at M.L.T., which provided an
excellent setting for this work.

Dimitri P. Bertsekas, dimitrib@mit.edu
Angelia Nedié, angelia.nedich@alphatech.com
Asuman E. Ozdaglar, asuman@mit.edu



Contents

1. Basic Convexity Concepts

1.1. Linear Algebra and Real Analysis .
1.1.1. Vectors and Matrices
1.1.2. Topological Properties .
1.1.3. Square Matrices
1.1.4. Derivatives . . .
1.2. Convex Sets and Functlons .
1.3. Convex and Affine Hulls .
1.4. Relative Interior, Closure, and Contlnulty
1.5. Recession Cones
1.5.1. Nonemptiness of Intersectlons of Closed Sets
1.5.2. Closedness Under Linear Transformations
1.6. Notes, Sources, and Exercises .

2. Convexity and Optimization

2.1. Global and Local Minima
2.2. The Projection Theorem .

2.3. Directions of Recession and Exxstence of Optlmal Solutlons .

2.3.1. Existence of Solutions of Convex Programs .
2.3.2. Unbounded Optimal Solution Sets
2.3.3. Partial Minimization of Convex Functions
2.4. Hyperplanes
2.5. An Elementary Form of Duahty
2.5.1. Nonvertical Hyperplanes .
2.5.2. Min Common/Max Crossing Duahty
2.6. Saddle Point and Minimax Theory
2.6.1. Min Common/Max Crossing Framework for Mlmmax
2.6.2. Minimax Theorems .
2.6.3. Saddle Point Theorems
2.7. Notes, Sources, and Exercises .

TETTTTTOT o0 T
[\l
=]

pc - . - . . .
STTTVTVTETTTY g gy T



X Contents

3. Polyhedral Convexity

3.1. Polar Cones .
3.2. Polyhedral Cones and Pol) hedral Sets )
3.2.1. Farkas’ Lemma and Minkowski-Weyl Theorem
3.2.2. Polyhedral Sets . .o
3.2.3. Polyhedral Functions
3.3. Extreme Points .
3.3.1. Extreme Points of Polyhedral Sets
3.4. Polyhedral Aspects of Optimization .
3.4.1. Linear Programming
3.4.2. Integer Programming
5. Polyhedral Aspects of Duality
3 5.1. Polyhedral Proper Separation .
3.5.2. Min Common/Max Crossing Duahty .
3.5.3. Minimax Theory Under Polyhedral Assumptions
3.5.4. A Nonlinear Version of Farkas’ Lemma
3.5.5. Convex Programming
3.6. Notes, Sources, and Exercises .

TTTTVV YTV LT TV VT VYT
[
©
o

o)
N
N
—

4. Subgradients and Constrained Optimization

4.1. Directional Derivatives .

4.2. Subgradients and Subdlfferentlals .

4.3. e-Subgradients

4.4. Subgradients of Extended Real Valued Functxons
4.5. Directional Derivative of the Max Function .

4.6. Conical Approximations

TUT TV ETT
Do
NS
ot

4.7. Optimality Conditions . 255
4.8. Notes, Sources, and Exercises . 261
5. Lagrange Multipliers . . . p. 269
5.1. Introduction to Lagrange Multipliers p. 270
5.2. Enhanced Fritz John Optimality Conditions p- 281
5.3. Informative Lagrange Multipliers p. 288
5.3.1. Sensitivity . p- 297
5.3.2. Alternative Lagrange Multzphers - p. 299
5.4. Pseudonormality and Constraint Qualifications . p- 302
5.5. Exact Penalty Functions . . p. 313
5.6. Using the Extended Representatlon p. 319
5.7. Extensions Under Convexity Assumptions p- 324
5.8. Notes, Sources, and Exercises . p- 335



&,

Contents
6. Lagrangian Duality p- 345
6.1. Geometric Multipliers p. 346
6.2. Duality Theory . . p. 355
6.3. Linear and Quadratic Programmmg Duahty p- 362
6.4. Existence of Geometric Multipliers p. 367
6.4.1. Convex Cost — Linear Constraints . p- 368
6.4.2. Convex Cost — Convex Constraints p. 371
6.5. Strong Duality and the Primal Function . p. 374
6.5.1. Duality Gap and the Primal Function p. 374
6.5.2. Conditions for No Duality Gap p. 377
6.5.3. Subgradients of the Primal Function . p. 382
6.5.4. Sensitivity Analysis . . p. 383
6.6. Fritz John Conditions when there is no Optlmal Solutlon p. 384
6.6.1. Enhanced Fritz John Conditions p. 390
6.6.2. Informative Geometric Multipliers . p. 406
6.7. Notes, Sources, and Exercises . p. 413
7. Conjugate Duality p. 421
7.1. Conjugate Functions p. 424
7.2. Fenchel Duality Theorems . . . p.434
7.2.1. Connection of Fenchel Duality and Mlmmax Theory . . p.437
7.2.2. Conic Duality . p. 439
7.3. Exact Penalty Functions . p. 441
7.4. Notes, Sources, and Exercises . p. 446
8. Dual Computational Methods . . . . . . . . . . . p.455
8.1. Dual Derivatives and Subgradients p. 457
8.2. Subgradient Methods p. 460
8.2.1. Analysis of Subgradient Methods p. 470
8.2.2. Subgradient Methods with Randomization p. 488
8.3. Cutting Plane Methods p. 504
8.4. Ascent Methods . p. 509
8.5. Notes, Sources, and Exercises . p. 512
References e o 7 & 4

Index......................p.529



