ik

I\l

Hung T. Nguyen
Tonghui Wang

Jg0 i e

I ge it =2 ah

A GRADUATE COURSE

IN

PROBABILITY AND STATISTICS

Volume 11

Essentials of Statistics

Tsinghua University Press



Hung T. Nguyen
Tonghui Wang

RSN R
I g it Al
A GRADUATE COURSE

IN
OBABILITY AND STATISTICS

Volume 11
Essentials of Statistics

Tsinghua University Press

Bei Jing



RRAXERA , 124050, BPEHRE S 010-62782989 13701121933

EH#ERSE (CIP) %43

MRS SEBE. F 2 %, Sit¥ERa /(%) F¥ (Hung T. Nguyen), (%) Tl
(Tonghui Wang) 433, —JbRt. HHERFH ML, 2009.4

FBAEI: A Graduate Course in Probability and Statistics. Volume 1I: Essentials
of Statistics

ISBN 978-7-302-19501-6

LEE--- MO @ FE-- IO WRKL—HH Q@ BESKIT—HM @ it
2k IV.021 C8

FERA B 43 CIP BiE&F (2009) 5 019319 5

wERE. 0 J

wER: NEH

WEEH. TEH

HARZ 1T . 1§ K% Mt it Hh: EEBFEREEWH AT A &
http: // www. tup. com. cn B . 100084

it A #Hl. 010-62770175 R M. 010-62786544
EMEIRERSE: 010-62776969, c-service@tup. tsinghua. edu. cn
B B K . 010-62772015,zhiliang@tup. tsinghua. edu. cn

 BHRKFERTT

: VT ETENERBR LA

: 2EFEHE

:165X230 EQ ¥. 26.5 T . 603 F

12009 4E 4 A¥ 1R Ep . 2009 4E 4 A451 KREPRI

: 1~2500

: 49,00 5

o=

MBFHERI
S5 MoaR ok ok

ABMAFAFRE D BT AT R TSR RS, F 5 e HR
AR R AR, BERBEIE. (010)62770177 % 3103 R S 028524-01



Preface

This Volume II is the second half of a text for a course in statistics at the
beginning graduate level. Statistics is a man-made science aiming at assisting
humans in making decisions in the face of uncertainty. This science is built
upon the rigorous theory of probability as described in Volume I. Thus, in
studying this text, students should consult Volume I whenever needed.

As stated in the preface of Volume I, there are various reasons to write
another text in statistics at the introductory level. An obvious reason is to
make the topic of statistics pleasant for students!

In an introductory course in statistics such as this one, one can only in-
clude basic ideas, concepts, procedures and applications at a very standard
level. By this we mean that only the topics of estimation, hypothesis testing
and prediction are included. Also, all inference procedures are developed for
the standard type of data, namely precise observations which are numerical or
vector-valued. The students should easily recognize that it is the data which
dictate the developed statistical procedures in this text. Thus, other types of
data, such as censored data in survival analysis, missing data in questionnaires,
coarse data in biostatistics, imprecise data (or partially observed data, such as
those occurring in the problem of identification of DNA sequences in bioinfor-
matics, using hidden Markov models), and perception-based data (which are
expressed linguistically) will not be discussed. However, the methodology for
precise data clearly indicates the general framework for analyzing other types
of data. After all, statistics is a science of data analysis.

With the rapid advances of technology, the use of statistics has been ex-
tended to many new emerging applications, both in physical and social sci-
ences. The text does not cover these new statistical techniques. The text is
written as a pedagogical source for instruction at universities. A solid under-
standing of statistics, at the simplest level, will open the door for embarking
on any new problems which call for statistical assistance.

We thank our families for their love and support during the preparation
of this text. Our Department of Mathematical Sciences at New Mexico State
University provided us with a constraint-free environment for carrying out this
project. We thank Dr. Ying Liu of Tsinghua University Press for asking us



to write this two-volume text for Tsinghua University Press. We would like
to thank our Ph. D. student Yanhong Tong who created all statistical tables
for Volume II and Dr. Baokun Li who gave us many valuable suggestions for
both volumes. Finally, we thank graduate students who took our statistics
courses (Volumes I and II) at New Mexico State University in 2005-2008 for
their comments during the preparation our textbooks.

Hung T. Nguyen and Tonghui Wang
Las Cruces, New Mexico, USA
August 2008
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Chapter 1

An Invitation to Statistics

This introductory chapter aims at answering three basic questions concern-
ing the topic of statistics, namely “WHAT 1is statistics?”, “WHY do we need
statistics?”, and “HOW to carry out statistical analysis?”.

This text is about the foundation of the science of statistics. Statistics
is a body of concepts and techniques to carry out inductive logic in almost
all activities of our daily lives. Although the applied concepts of the theory,
such as experiment designs, sampling methods, and data analysis, will not be
discussed in a text such as this, we feel obligated to introduce the students to
the field of statistics from what statistics is created for.

1.1 A Motivating Example

Suppose that we are interested in the annual income of individuals in the
population of Las Cruces, say, in 2004. Suppose that, for some reasons (such
as cost and time), we are unable to conduct a census (i.e. a complete enu-
meration) throughout the whole population, and hence we could rely only on
the information about the income from a part of that population. Of course,
before going out to do that, we need to prepare the ground carefully. Specif-
ically, first we need to decide who to be included in the population. Since
the wvariable of interest is the annual income, we should exclude, for example,
children who do not work from the population. Next, we should worry about
whether or not when asking (by phone or by sending out questionnaires) se-
lected individuals, their answers are with or without errors. Then, in going
out to select a sample, a part of the population, we might want to conduct the
survey in some beneficial way, e.g. by dividing the geography of the city into
appropriate zones. All that is part of what we call the design of ezperiments.
For this applied topic, see a text like Dean and Voss (1999).

1



2 Chapter 1

Suppose that the physical population of individuals is identified as a finite
set U = {u1,u2, -+ ,un}, where N is the population size. Our variable of
interest is #, the annual income. We will use f(uy) to denote the annual
income of the individual ug. Thus # is a map from U to R, ie. 8: U — R.
The map (or function) & is unknown but fixed at the outset. We are going to
obtain partial knowledge about 6 by conducting a sampling survey, i.e. select a
sample A from U and discover the value of 8 from A. In this obvious situation,
A is a subset of U (in statistical parlance, we select a sample by “drawing”
without replacement, and the order of drawings does not matter). From the
knowledge of the restriction of 8 to A, we wish to “guess” or estimate 6, or
some functions of it, e.g. the population total

N
(@) = 0(u) = O(uk).
k=1

uecl

This is inductive logic: making statements about the whole population U from
the knowledge of a part of it. Then the basic question is: How to make this
inductive logic valid? For example, how do we know that, say,

Z 6(u) is a good estimate of 7(6)?
ucA

Can we specify the error in our estimation process? Obviously, questions such
as these are related to the quality of the data we collected, e.g. does our
data (i.e. the values of @ in our selected sample A) representative or typical
for the whole population? Thus it all boils down to “how to select a good
sample?”. It seems that to eliminate bias in the selection of samples, and to
gain public acceptance (with regard to objectivity), we could select samples
at random. For example, if we decide to select a sample of size n, then any
subset of size n of U should have the same chance to be selected, which is
1/ (]:: ) While the population and our variable of interest § have nothing to do
with randomness, we introduce a man-made randomization into our process of
the sample selection in the hope of making our intended inductive reasoning
valid. In other words, we create a chance model. As we will see, by doing so,
we will obtain more than just getting a “good” data set, namely we will be
able to assess the qualities of our estimation procedures.

Now observe that when we select samples according to a probability sam-
pling scheme (or plan), we actually perform a random experiment (with known
structure, like a game of chance) whose outcomes are samples which are sub-
sets of the population (say, in the case of sampling without replacement and
the order does not matter). In Volume I, we have that a random element
whose values are subsets of some set is called a random set. Thus, formally,
a probability sampling design is a random set since samples are obtained at
random. The distribution of the random set S is given as a bona fide prob-
ability density function (or density) on the space of all subsets of the finite
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population U, the power set of U, which is denoted as P(U). It is this given
density function which allows us to select samples in some random fashion.
The choice of such a density depends on practical problems at hand and is left
to applied statisticians!

Before making further statistical models, we see that, at a very primitive
level of induction, randomness, and hence probability theory, enters the pic-
ture. It provides us with a good framework to carry out the inductive logic
for applications. Specifically, let

f:PU)— 0,1, f(A)=P(S=4), ACU

be the density function of the random set S. In our example, § : U — R
is unknown, and is referred to as a population parameter. The population
total 7(0) is referred to as a parametric function. Various aspects of statistical
inference (i.e. inductive logic using probability theory) can be then properly
formulated. We can consider an abstract probability space (£2,.4, P), or just
(P(U),P(P(U)), Ps), where P(P(U)) is the o-field of all subsets of P(U), and
Ps is the probability measure on P(P(U)), induced by f, i.e.

Pi(A) =) f(A), for AeP(PU)).
A€A

For example, the expected sample size is

E(#(8) = ) #(A)F(A).

ACU

To illustrate an estimation problem, consider the target 7(6). Let S be a
random sample selected according to the random mechanism generated by f.
Then we could propose a “good” estimator for 7(#) as some function of S, T,
such that

E(Ts) = 7(6), forall 6:U —R.

Note that the requirement “for all § : U — R” is necessary since our actual ¢
is unknown. For example,

TS:ZM

b
u€S ﬂ-(u)

where

m(w) = P(w: ue Sw) = 3 £(A),
i

provided, of course, that m(u) > 0 for all w € U.
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1.2 Generalities on Survey Sampling

As we will see, the theory of statistical inference developed in this section is
traditional (or standard) in the sense that the statistical data are assumed
to be a collection of independent and identically distributed (i.i.d.) random
variables. However, students should be aware of “classical” or “practical”
aspects of statistical applications. For this reason, we intend to mention here
the area of survey sampling and its statistical inference.

The framework for survey sampling is very simple. Let U be a finite popu-
lation, say, U = {1,2,--- ,N}. As stated in the previous section, a probability
sampling design is a density f on P(U), ie.

f:PU) —[0,1] such that Z F(A)=1.
’ ACU

Let S be a random set with density f, defined on (£2, A, P), or just the identical
map defined on the probability space (P(U), P(P(U)), P¢). The density f
induces covering functions for subsets of U. For j € U, let 7(j) denote the
probability that j will be included in a sample “drawn” according to f, i.e.

w(f)=PGeS) =) f(4).
ACU
JjeA
We can write 7(j) = n({;}) and call n(-) the one-point coverage function (or
first order probabilities of inclusion) of S (or of f). By abuse of notation, we

write
w6, 5) =m({i, 7)) = Y. F(A)
ACU
{ij}cA

to be the two-point coverage function (or second order probabilities of inclu-
sion), and more generally, m(A) for A C U. Of course, if m(A) is known for
any A C U, then f can be recovered (exercise). These covering functions are
similar to moments of random variables.

In applications, it is desirable to specify the one-point coverage function
7(-) and look for f having precisely 7 (-) as its one-point coverage function. We
will discuss shortly the role played by probabilities of inclusion in statistical
inference in survey sampling.

The key point of analysis is the introduction of Bernoulli random vectors.
For each j € U, let I; : P(U) — {0, 1} be a Bernoulli random variable with
parameter

P(Ij=1) = P{ACU : Ij(4) = 1} = (),

1 if jed
I;(A) =
i) {0 if j¢ A

where
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For #(U) = N, we consider the random vector (I, I2,- -+ ,In). We note that
m(-) is simply a function from U to [0, 1]. Now the density f on P(U) is “equiv-
alent” to the joint distribution of the Bernoulli random vector (I, I, --- ,In).
This can be seen as follows. Making the bijection between P(U) and {0, 1}V:

A (e1,62," " ,EN) =€
with A¢ = {j € U : €; = 1}, we have
f(Ae)=P(li=e1, Iz =¢3,--- ,Iy = en), €€ {0,1}V.

Thus, if we specify a function = : U — [0,1], then the Bernoulli random
variables I; with parameters n(j) have fized marginal distributions.

As such, their joint distributions are determined by N-copulas according
to Sklar’s theorem (Volume I). Specifically, let F; be the distribution of I;,
namely,

0 if <0
Fj(x) =< 1—n(j) if 0<z<1
1 if z>1.

Let C be an N-copula, then the joint distribution function of (Iy, I, -+, In)
could be

F(z1,x2,-- ,zn) = C [F1(z1), Fa(z2), -+, Fn(zN)] -
For example, by choosing

N

C(ylxyza"' 7yN) = Hyja
Jj=1

we obtain the well-known Poisson sampling design:
£4) = I = T @ - =G,
JEA jeAs

where A° = U \ A is the complement of A.

Remark. The above simple analysis provides a general way to obtain various
sampling designs from the specification of 7 : U — [0, 1]. For example, if we
choose the N-copula C(y1,¥2,--- ,y~) to be the minimum of the y; € [0,1],
ie.

N
Clyr,y2, - yyn) = /\ Yj
Jj=1

then

SA) = 32 ) 1 ()],

BCA
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is a probability sampling design having 7 (-) as its one-point coverage function
(where |A| denotes #(A)). See exercise. For additional reading on copu-
las and the problem of the joint distribution with given marginal distribu-~
tions(Frechet’s problem), see Nelson (1999) and Dall’Aglio (1991). a

Some aspects of statistical inference in survey sampling are given here. Let
8 : U — R be a quantity of interest. The parameter space is the function space
RY = {g: U — R}. First, under a sampling design f : P(U) — [0, 1], the size
of the sample S is

N
#(S) =Y _I;(S),
j=1

s0 that
N

N N
E(#(5)) =D _E(L(9) =3 PG €8 =3 ().

=1

This can be viewed also as a special case of Robbin’s formula (Volume I) for
counting measure (see exercise).
Consider the population total

N

T(0) = )_6() = Y_6())-

jeu j=1

The well-known unbiased Horvitz- Thompson estimator of 7(8) is

Jj€s
Indeed,
N .
(OEDIENIO
so that
. o 00) o 6(9) X
E(#S) =Y 5 BU(S) =D 2md) = 3 0G) = 7(6),
j=1 j=1 j=1

for all @ € RY.

For additional reading on the state-of-the-art of the theory of statistical
inference in survey sampling, see Cassel et al (1977), Hajek (1981), Foreman
(1991), Sarndal et al (1992), and Knottnerus (2003). For a classical text on
Sampling Techniques, see e.g. Cochran (1977).
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1.3 Statistical Data

The motivating example in Section 1.1 provides a typical situation in which
a statistical science is needed. Statistics is a science of making inference
from samples to populations. Starting with providing useful information for
states (hence the name statistics), the framework and methodology of statis-
tics spread out to almost all fields of our society. These include engineering,
science, economics, medicine, agriculture, and business. This is due to the
common features of these fields with respect to estimation, testing of theories
and prediction, all based upon observations of parts of the whole population.
In a broader sense, statistics is a part of a general theory of decision-making
under uncertainty. A statistic is a function of the observations from phenom-
ena or systems. The science of statistics consists of using probability theory
to arrive at valid inductive logic. From this perspective, it is easy to list the
applications of statistics in almost all human activities. Statistical science
provides a framework and methodology for solving problems which, otherwise,
should be left to fortune tellers! The need to use statistics to reach conclusions
is thus apparent since, after all, we live in a world full of uncertainties, and
the quest for knowledge discoveries is inherent in human nature.

In order to carry out valid inductive logic, we need data. One way that
randomness enters the picture is through man-made randomization such as
sample survey. Since inference cannot be absolutely certain, we need to use
the language of probability theory to formulate results of statistical inference.
Students interested in logical aspects of statistical reasoning can read, e.g.,
Hacking (1976).

Another situation where sets appear as outcomes of a natural (not man-
made) random experiment is the following,.

Let X be a random variable of interest, say,

X: (2,A,P) — (U,B, Px),

where the probability law Px of X is unknown. To discover Px, we perform
repeatedly experiments on X to. obtain observations X1, Xa, -+ ,X,. In the
case where the observations X; cannot be observed (directly or precisely), due
to various reasons, such as precisions of measurement instruments, observa-
tions are corrupted by noise. We might need to find ways to extract some
information from our experiments. A mechanism for achieving this is called a
coarsening. As in the problem of selecting samples from a population, coarsen-
ing mechanism can be deterministic or random. Here is a coarsening example.
Suppose that, while an outcome X (w) from X cannot be observed, it can be lo-
cated in one of the elements of a finite B-partition of U, say, {A;, Az, -+ , Ag},
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where A; € B,i=1,2,--- ,k,

k
AinAj=@ for i#j, and |JAi=U.
i=1
Specifically, we observe the set A; which contains X (w). Thus, what we will
observe are sets in {A;, Ag, -+, Ax}. As in the random sampling of samples of
fixed size, the A;’s will be obtained at random (not from a man-made random
mechanism, but from the natural randomness coming from the unknown Pyx).
Note that a chosen partition {A;, Ag,- -, Ag} is similar to selecting samples of
some given size in survey sampling. Each A; represents the information about
the value of X which falls into it. Of course, the sizes of the A;’s represent
the precision of the coarsening scheme. When performing an experiment on
X, the chance for observing A; (i.e. X € A;) is precisely

P(X € A;) = Px(Ai), i=1,2,-- k.
Thus, the coarsening is in fact random. Specifically, if we let
S: (2,A,P) — {A;, Az, -, Ag}
be a (finite) random set with probability density
fs(Ai) = P(§ = A;) = Px(A;), i=12,---,k,

then P(X € §) =1, i.e. X is an almost sure selector of S, or S is a coarsening
of X. Thus, formally, a random set is a mathematical model for coarsening.
The “outcomes” on X turn out to be values of 5, i.e. an outcome of our
experiment in this situation is a set.

In this coarsening scheme, clearly we have that

PS=AlX=1x)=1 as long as z € A,

so that P(S = A;|X = z), as a function of z, is constant on A;. Tt is this
fact that suggests a general model for coarsening known at the coarsening at
random (CAR models), see Chapter 2 of Volume I. If we set

7T(A)= 1 for AE{Al,Az,---,Ak}
0 for other A € B,

then
[s(A) = n(A)Px(A) for any A€ B.

Here we set fs(A) =0 when A ¢ {A;, Ay,--- , Ax}. In particular, when U is
finite (B = P(U), the power set of U), we have that

Z w(4) =1 foreach ze€U.
A3z



