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Preface to the Second Edition

The development of realistic mathematical models that govern the response of
systems or processes is intimately connected to the ability to translate them
into meaningful discrete models that enable us to systematically evaluate vari-
ous parameters of the systems and processes. Mathematical model development
and numerical simulations are aids to designers, who are seeking to maximize
the reliability of products and minimize the cost of production, distribution,
and repairs. Mathematical models are developed using laws of physics and as-
sumptions concerning a system’s behavior. The most important step in arriving
at a design that is both reliably functional and cost-effective is the construction
of a suitable mathematical model of the system behavior and its translation
into a powerful numerical simulation tool. While a select number of courses on
continuum mechanics, material science, and dynamical systems, among others,
provides engineers with the background to formulate a suitable mathemati-
cal model, courses on numerical methods prepare engineers and scientists to
evaluate mathematical models and test material models in the context of the
functionality and design constraints placed on the system. In cases where phys-
ical experiments are prohibitively expensive, numerical simulations are the only
alternative, especially when the phenomena is governed by nonlinear differential
equations, in evaluating various design options. It is in this context a course on
nonlinear finite element analysis proves to be very useful.

Most books on nonlinear finite element analysis tend to be abstract in the
presentation of details of the finite element formulations, derivation of element
equations, and their solution by iterative methods. Such books serve as refer-
ence books but not as textbooks. The present textbook is unique (i.e. there
is no parallel to this book in its class) since it actually helps the readers with
details of finite element model development and implementation. In particular,
it provides illustrative examples and problem sets that enable readers to test
their understanding of the subject matter and utilize the tools developed in the
formulation and finite element analysis of engineering problems.

The second edition of An Introduction to Nonlinear Finite Element Anal-
ysis has the same objective as the first edition. namely, to facilitate an easy
and thorough understanding of the details that are involved in the theoretical
formulation, finite element model development, and solutions of nonlinear prob-
lems. The book offers easy-to-understand treatment of the subject of nonlinear
finite element analysis, which includes element development from mathematical
models and numerical evaluation of the underlying physics. The new edition
is extensively reorganized and contains substantially large amount of new ma-
terial. In particular, Chapter 1 in the second edition contains a section on
applied functional analysis; Chapter 2 on nonlinear continuum mechanics is en-
tirely new; Chapters 3 through 8 in the new edition correspond to Chapter 2
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through 8 of the first edition but with additional explanations, examples, and
exercise problems (material on time dependent problems from Chapter 8 of the
first edition is absorbed into Chapters 6 through 10 of the new edition); Chap-
ter 9 is extensively revised and it contains up to date developments in the large
deformation analysis of isotropic, composite, and functionally graded shells;
Chapter 10 of the first edition on material nonlinearity and coupled problems is
reorganized in the second edition by moving the material on solid mechanics to
Chapter 12 in the new edition, and material on coupled problems to Chapter 10
on weak-form Galerkin finite element models of viscous incompressible fluids;
finally, Chapter 11 in the second edition is entirely new and devoted to least-
squares finite element models of viscous incompressible fluids. Chapter 12 of
the second edition (available only online) contains material on one-dimensional
formulations of nonlinear elasticity, plasticity, and viscoelasticity. In general,
all of the chapters of the second edition contain additional explanations, de-
tailed example problems, and additional exercise problems. Although all of the
programming segments are in Fortran, the logic used in these Fortran programs
is transparent and can be used in Matlab or C*T versions of the same. Thus
the new edition more than replaces the first edition, and it is hoped that it is
acquired by the library of every institution of higher learning as well as serious
finite element analysts.

The book may be used as a textbook for an advanced course (after a first
course) on the finite element method or the first course on nonlinear finite
element analysis. A solutions manual has also been prepared for the book. The
solution manual is available from the publisher only to instructors who adopt
the book as a textbook for a course.

Since the publication of the first edition, many users of the book communi-
cated their comments and compliments as well as errors they found, for which
the author thanks them. All of the errors known to the author have been cor-
rected in the current edition. The author is grateful to the following professional
colleagues for their friendship, encouragement, and constructive comments on
the book:

Hasan Akay, Purdue University at Indianapolis

Marcilio Alves, University of Sao Paulo, Brazil

Marco Amabili, McGill University, Canada

Ted Belytschko, Northwestern University

K. Chandrashekara, Missouri University of Science and Technology
A. Ecer, Purdue University at Indianapolis

Antonio Ferreira, University of Porto, Portugal

Antonio Grimaldi, University of Rome II, Italy

R. Krishna Kumar, Indian Institute of Technology, Madras
H. S. Kushwaha, Bhabha Atomic Research Centre, India

A. V. Krishna Murty, Indian Institute of Science, Bangalore
K. Y. Lam, Nanyang Technological University. Singapore
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K. M. Liew. City University of Hong Kong

C. W. Lim, City University of Hong Kong

Franco Maceri, University of Rome II, Italy

C. S. Manohar, Indian Institute of Science, Bangalore
Antonio Miravete, Zaragoza University. Spain

Alan Needleman, Brown University

J. T. Oden, University of Texas at Austin

P. C. Pandey, Indian Institute of Science, Bangalore
Glaucio Paulino, University of Illinois at Urbana-Champaign
A. Rajagopal, Indian Institute of Technology, Hyderabad
Ekkehard Ramm, University of Stuttgart, Germany
Jani Romanoff, Aalto University, Finland

Samit Roy. University of Alabama, Tuscaloosa

Siva Prasad, Indian Institute of Technology, Madras
Elio Sacco. University of Cassino, Italy

Ritdger Schmidt, University of Aachen, Germany

E. C. N. Silva, University of Sao Paulo, Brazil

Fanis Strouboulis, Texas A&M University

Karan Surana, University of Kansas

Liqun Tang, South China University of Technology
Vinu Unnikrishnan, University of Alabama, Tuscaloosa
C. M. Wang, National University of Singapore

John Whitcomb, Texas A&M University

Y. B. Yang, National Taiwan University

Drafts of the manuscript of this book prior to its publication were read by the
author’s doctoral students, who have made suggestions for improvements. In
particular, the anuthor wishes to thank the following former and current students
(listed in alphabetical order): Roman Arciniega, Ronald Averill, Ever Barbero,
K. Chandrashekhara, Feifei Cheng, Stephen Engelstad, Eugénio Garcao, Miguel
Gutierrez Rivera, Paul Heyliger, Filis Kokkinos, C. F. Liao, Goy Teck Lim,
Ravisankar Mayavaram, John Mitchell, Filipa Moleiro, Felix Palmerio, Gregory
Payette, Jan Pontaza, Vivek Prabhakar, Grama Praveen, N. S. Putcha, Rakesh
Ranjan, Mahender Reddy, Govind Rengarajan, Donald Robbins, Jr., Samit
Roy, Vinu Unnikrishnan, Ginu Unnikrihnan, Yetzirah Urthaler, Venkat Vallala;
Archana Arbind, Parisa Khodabakhshi, Jinseok Kim, Wooram Kim, Helnaz
Soltani, and Mohammad Torki. The author also expresses his sincere thanks
to Mr. Sonke Adlung (Senior Editor, Engineering) and Ms. Victoria Mortimer
(Senior Production editor) at Oxford University Press for their encouragement
and help in producing this book. The author requests readers to send their
comments and corrections to jnreddy@exchange.tamu.edu.

J. N. Reddy
College Station, Texas



Preface to the First Edition

The objective of this book is to present the theory and computer implemen-
tation of the finite element method as applied to simple nonlinear problems of
heat transfer and similar field problems, fluid mechanics, and solid mechanics.
Both geometric as well as material nonlinearities are considered, and static and
transient (i.e. time-dependent) responses are studied. The guiding principle in
writing the book was to make the presentation suitable for (a) adoption as a
text book for a first course on nonlinear finite element analysis (or for a second
course following an introductory course on the finite element method) and (b)
for use by engineers and scientists from various disciplines for self-study and
practice.

There exist a number of books on nonlinear finite elements. Most of these
books contain a good coverage of the topics of structural mechanics, and few
address topics of fluid dynamics and heat transfer. While these books serve
as good references to engineers or scientists who are already familiar with the
subject but wish to learn advanced topics or latest developments, they are not
suitable as textbooks for a first course or for self study on nonlinear finite
element analysis.

The motivation and encouragement that led to the writing of the present
book have come from the users of the author’s book, An Introduction to the
Finite Element Method (McGraw-Hill. 1984; Second Edition, 1993; third edition
scheduled for 2004), who have found the approach presented there to be most
suitable for any one - irrespective of their scientific background - interested
in learning the method, and also from the fact that there does not exist a
book that is suitable as a textbook for a first course on nonlinear finite element
analysis. The author has taught a course on nonlinear finite element analysis
many times during the last twenty years, and the present book is an outcome
of the lecture notes developed during this period. The same approach as that
used in the aforementioned book, namely, the differential equation approach, is
adopted in the present book to introduce the theory, formulation, and computer
implementation of the finite element method as applied to nonlinear problems
of science and engineering.

Beginning with a model (i.e. typical) second-order, nonlinear differential
equation in one dimension, the book takes the reader through increasingly
complex problems of nonlinear beam bending, nonlinear field problems in two
dimensions, nonlinear plate bending, nonlinear formulations of solid continua,
flows of viscous incompressible fluids in two dimensions (i.e. Navier-Stokes
equations), time-approximation schemes, continuum formulations of shells, and
material nonlinear problems of solid mechanics.

As stated earlier, the book is suitable as a textbook for a first course on
nonlinear finite elements in civil, aerospace, mechanical, and mechanics depart-
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ments as well as in applied sciences. It can be used as a reference by engineers
and scientists working in industry, government laboratories, and academia. In-
troductory courses on the finite element method, continmum mechanics, and
numerical analysis should prove to be helpful.

The author has benefited in writing the book by the encouragement and
support of many colleagues around the world who have used his book, An
Introduction to the Finite Element Method, and students who have challenged
him to explain and implement complicated concepts and formulations in simple
ways. While it is not possible to name all of them, the author expresses his
sincere appreciation. The author expresses his deep sense of gratitude to his
teacher and mentor, Professor J. T. Oden (University of Texas at Austin),
without whose advice and support it would not have been possible for the
author to modestly contribute to the field of applied mechanics in general and
theory and application of the finite element method in particular, through his
teaching, research, and writings.

J. N. Reddy
College Station, Texas
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List of Symbols

The symbols that are used throughout the book for various quantities are de-
fined in the following list but the list is not exhaustive. In some cases, the same
symbol has different meaning in different parts of the book, as it would be clear
in the context.

Arabic alphabetical symbols

D
da
dA
dx
dX
D/Dt, d/dt
ds
dS
€e
e
€;

Acceleration vector, %

Bilinear form

Left Cauchy-Green deformation tensor (or Finger tensor),
B = F - F"; magnetic flux density vector

Cauchy strain tensor, B=F 1. F-1, B-' =B

Specific heat. moisture concentration

Specific heat at constant volume and pressure

Couple vector

Right Cauchy Green deformation tensor, C = F' . F;
fourth-order elasticity tensor [see Eq. (2.4.3)]
with coefficients Cj; or Cyju

Symmetric part of the velocity gradient tensor, 1 = (Vv)7T,
that is d = % [(Vv)T + VV]; electric flux vector;
mass diffusivity tensor

Internal dissipation

Area element (vector) in spatial description

Area element (vector) in material description

Line element (vector) in current configuration

Line element (vector) in reference configuration

Material time derivative

Surface element in current configuration

Surface element in reference configuration

Internal energy per unit mass

Almansi strain tensor, e= 5 (I-F~T.F~!)

A basis vector in the z;-direction

Components of alternating or permutation tensor, £

A unit vector

A unit basis vector in the direction of vector A

Young’s modulus (modulus of elasticity)

Green- Lagrange strain tensor, E = % (FT -F — I)
with components £;;

Unit base vector along the X; material coordinate direction

Body force vector

Body force components in the z, y, and 2z directions

Load per unit length of a bar



LIST OF SYMBOLS

(n Heat flux normal to the boundary, ¢, = V - &

qo Heat flux vector in the reference configuration

q; Force components

q Heat flux vector in the current configuration

)] First moment of area; volume rate of flow

Qn Heat input

T Radial coordinate in the cylindrical polar system

Th Internal heat generation per unit mass in the
current configuration

ro Internal heat generation per unit mass in the
reference configuration

R Radial coordinate in the spherical coordinate system;
universal gas constant

R Position vector in the spherical coordinate system;
proper orthogonal tensor; residual vector

S A second-order tensor; second Piola—Kirchhoff stress tensor

Si; Elastic compliance coefficients

i Time

t Stress vector; traction vector

i Torque; temperature

T Tangent coefficient matrix with coefficients Tj;

u Displacement vector

wy, U, ws  Displacements in the xy, 29, and x3 directions

U Internal (or strain) energy

U Right Cauchy stretch tensor

Uy UV, W Displacement components in the x,y, and z directions

Wy Uy, u;  Displacements in the z,y, and z directions
v Velocity, v = |v|
Vv Shear force in beam problems; potential energy due to loads
Vi Scalar potential
v Velocity vector in spatial coordinates, v = %%
A% Velocity vector in material coordinates;

left Cauchy stretch tensor

Vg, Uy, U, Velocity components in the z,y, and 2 directions

w Vorticity vector, w = %V XV

Whet Net rate of power input

%% Skew symmetric part of the velocity gradient tensor,
L= (Vv)T"; that is W = % [(VV)T - Vv,

x Spatial coordinates

X Material coordinates

ry, 29, r3  Rectangular Cartesian coordinates

By Y 2 Rectangular Cartesian coordinates

Y Relaxation modulus

2 Transverse coordinate in the beam problem;

axial coordinate in the torsion problem
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Greek and parenthetical symbols

Y

K,

Angle; coefficient. of thermal expansion;
a parameter in time-approximation schemes

Thermal coeflicients of expansion

Acceleration parameter for convergence

Material coefficients, f3;j = Cijke cge

Parameter in the Newmark scheme; penalty parameter

Shear strains in structural problems

Internal entropy production; boundary of €2

Variational operator used in Chapter 2; Dirac delta

Components of the unit tensor, I (Kronecker delta)

Change of (followed by another symbol)

Infinitesimal strain tensor

Symmetric part of the displacement gradient tensor,
(Vu)7T; that is € = § [(Vu)" + Vu]

Total stored energy per unit mass; convergence tolerance

Rectangular components of the infinitesimal
strain tensor

Natural coordinate

Entropy density per unit mass; dashpot constant;
natural coordinate

Viscosity coefficient

Angular coordinate in the cylindrical and spherical
coordinate systems; angle; twist per unit length;
absolute temperature

Reference and current configurations

Extension ratio; Lamé constant; eigenvalue

Lamé constant; viscosity; principal value of strain

Poisson’s ratio; v;; Poisson’s ratios

Natural coordinate

Total potential energy functional

Density in the current configuration; charge density

Density in the reference configuration

Boltzman constant

Mean stress

Cauchy stress tensor

Shear stress; time

Viscous stress tensor

Deformation mapping

Approximation functions; Hermite interpolation functions

A typical variable; angular coordinate in the spherical
coordinate system; electric potential; relaxation function
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