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Foreword

After several friendly discussions of the pros and cons of tensors versus
differential forms in the solution of engineering problems, I persuaded my
colleague Dr. Flanders to prepare a number of lectures on differeutial forms.
The result was an outstanding series of lectures which was presented to a
group of interested faculty members within the several schools of Engineering
at Purdue University.

It became obvious to those attending that the use of differential forms
would give them another tool for the analysis and synthesis of engineering
systems. There are certain problems, normally very difficult to solve by
using tensors only, for which results are more quickly and directly obtained
with differential forms.

The author was encouraged to formalize his notes to the extent necessary
for publication, to enable others to study this important subject. The text
is recommended highly because differential forms and related concepts which
have evolved from modern mathematics are new and powerful analytical
tools for use by the engineer and scientist.

v GeorcE A. HAwkins, Dean
Schools of Engineering and Mathematical Sciences
Purdue University
November 20, 1962
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Preface

Last spring the author geve a series of lectures on exterior differential
forms to a group of faculty members and graduate students from the Purdue
Engineering Schools. The material that was covered in these lectures is
presented here in an expanded version. The book is aimed primarily at
engineers and physical scientists in the hope of making available to them new
tools of very great power in modern mathematics. Although none of our
applications goes very deep, it is hoped, nevertheless, that enough ground
is covered in each case to indicate the usefulness of this machinery.

A word about the organization of the book is in order. The first chapter is
introductory and sketches where we are going and why. Chapters IT, III,
and V include all of the theoretical material; a knowledge of this opens the
door to the applications. Probably on first reading, one should aim moere at
developing some intuition for the subject and getting a firm idea of what the
various different things which are defined look like, rather than at working
out proofs in detail. Applications to questions in differential geometry (in-
cluding many topics of considerable use in physical sciences) are mostly in
Chapters IV, VI, VIII, and IX. Applications to various topics in ordinary
and partial differential equations will be found in Chapter VII. Finally,
applications to several topics in physies are in Sections 3.5, 4.6, 6.4, and
Chapter X.

What is presupposed of the reader is first of all a certain amount of scien-
tific maturity, the precise direction not being too important. While the book
is not really advanced mathematics, it is not exactly ground floor mathe-
matics either, and a reasonable knowledge ‘of the calculus of functions of
several real variables is necessary, as is & working knowledge of linear algebra

: through the ideas of linear combination, basis, dimension, linear transforma.-

tion. Some exposure to & minimum amount of the ground rules of modern
mathematics, sets, cartesian products, functions on sets, is helpful but not
essential. This material is usually picked up by osmosis anyway, and the
Glossary of Notation at the end of the book should be helpful. The reader
should also know about the existence of solutions of ordinary differential
equations. A passing familiarity with tensor methods is useful, but not
essential.

If our audience consisted of mathematicians alone, it would be in order to
use somewhat more care in our formulations of definitions and proofs of
theorems and to discuss in considerably more depth numerous technical
points we here pass over lightly. Our goal, however, is to develop an intuition
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x PREFACE

and a working knowledge of the subject with as much dispatch as is possible.
This perhaps could be done in less space except for our insistence on a degree
of rigor matching that found in the better treatises on theoretical physics.
This falls short of the extremely great precision which is customary in modern
abstract mathematics and pretty much inherent in its nature. One who quite
rightly is searching recent developments in mathematics for applicable
material must find this precision a considerable barricade, overpedantic if not
downright tedious—a very real factor in the great separation between modern
mathematics and modern science. Making his craft available to science is not
a light task for the mathematician and. the extent to which this book makes a
~ contribution therein must necessarily be its primary measure of success.

In spite of all this, we do not hesitate to recommend this material to
graduate students in mathematics as an introduction to modern differential
geometry; indeed, a well-trained advanced undergraduate should find the
book quite accessible. Considering the degree to which present day mathe-
matical training consists of one abstraction after another, some of the things
in this book could be a bit of an eye-opener, even to a mathematics student
who is well along. For example, one could envisage such a student meeting
here a parabolic differential equation, or a matrix group, or a contact trans-
formation for the very first time,

It is my pleasant duty to acknowledge the substantial help and encourage-
ment I have always had from my teachers, colleagues, and students. In this
respect a special vote of thanks is due George A. Hawkins, Dean of the
Schools of Engineering and Mathematical Sciences of Purdue University.
Finally, I wish to express my gratitude to Elizabeth Young, whose beautiful
typing of the manuscript was a substantial contribution.

July 1963 Harrey FLANDERS
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Introduction

1.1. Exterior Differential Forms

The objects which we shall study are called exterior differential forms.
These are the things which occur under integral signs. For example, a line
integral

fAdx+ Bdy+Cdz

leads us to the one-form
w=Adx + Bdy + Cdz;
a surface integral

f-[dedz + Qdzdx + Rdxdy

leads us to the two-form
o= Pdydz + Qdzdr + Rdxdy;

and a volume integral
f J.J-H dxdydz

A= Hdzdydz.

These are all examples of differential forms which live in the space E3 of three
variables. If we work in an n-dimensional space, the quantity under the
integral sign in an r-fold integral (integral over an »-dimensional variety) is an
r-form in n variables.

In the expression x above, we notice the absence of terms in dzdy, dxdz,
dydz, which suggests symmetry or skew-symmetry. The further absence
of terms dxdz, - - - strongly suggests the latter.

We shall set up a calculus of differential forms which will have certain
inner consistency properties, one of which is the rule for changing variables
in a multiple integral. Our integrals are always oriented integrals, hence
we never take absolute values of Jacobians.

Consider
J‘f Az, y)dedy
1

leads us to the three-form
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‘with the change of variable
{:c = z(u, v)

y = y(u, v).
We have

J.J'A(x, y)dxdy = J}A[z(u, v), y(u, v)] gg’ Z; dudy,

which leads us to write

oxr Oz
ou ov
dedy = 2% Y dudy = dudy.
O(u, v) dy dy
ow ov

If we set y =z, the determinant has equal rows, hence vanishes. Also if
we interchange z and y, the determinant changes sign. This motivates the
rules

drdx =0
dydx = —dzdy
for multiplication of differentials in our calculus.
In genersl, an (extersor) r-form in n variables xt, - - - , 2" will be an expression

1 .
w=r_!zAh....,,~, dxft -« dalr,

where the coefficients 4 are smooth functions of the variables and skew-
symmetric in the indices.

‘We shall associate with each r-form w an (r 4+ 1)-form de called the exterior
derivative of . Its definition will be given in such a way that validates the

general Stokes’ formula
j w = J. do.
or £

Here L is an (r + 1)-dimensional oriented variety and JZ is its boundary.
A basic relation is the Poincaré Lemma:

d(dw) =

In &ll cases this reduces to the equality of mixed second partials.

1.2, Comparison with Tensors

At the outset we can assure our readers that we shall not do away with
tensors by introducing differential forms. Tensors are here to stay; in a
great many situations, particularly those dealing with symmetries, tensor
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1.2. COMPARISBON WITH TENSORS 3

methods are very natural and effective. However, in many other situations
the use of the exucrior caloulus, often combined with the method of moving
frames of ¥. Carian, iesds to decisive resulte in & way which is very difficult
with tepsors alone. Sometimes & combination of techniques is inn ovder. We
list several points of contrast.

(a) Tensor analysis per se seems to consist only of techniques for cal-
culations with indexed quantities. It lacks & body of substantial or deep
results established once and for all within the sabject and then available for
application. The sxterior ealculus does have such a boedy of resulis.

If one takes & close look at Riemannian geometry as it is customarily
developed hy tensor methods one must seriously ask whether the geometric
results cannot be obtained more cheaply by other machinery.

(b} In classical tensor analysis, one never knows what is the range of
applicability simply because one is never told what the space is. Everything
seems to work in & coordinate patch, but ws know this is inadeguate for most
spplications. For example, if a particle is oonstrained to move on the
sphere $2, a single soordinate system cannot describe its position space, let
alone its phase or state spaces.

This difficulty has been overcome in modern times by the theory of
differentiabie manifolds (varieties) which we disciss in Chapter V.

{¢) Tensor fields do not behave theinselves under mappings. For
example, given & contravariant vector field a’ on 2-space and & mapping ¢
on z-space to y-space, there is no naturaily induced field on the y-space.
{Try the map t — (t%, t*) on E! into E2.)

With exterior forms we have a really attractive situation in thisregard. If

¢: M-—— N

and if © iz a p-form on N, there is naturally induced a p-form ¢*w on M.

Let us illustrate this for the simplest case in which w is a 0-form, or scalar,
i.e., a real-valued function on N. Here ¢* w = w o ¢, the composition of the
mapping ¢ followed by w.

M N

* |

w
d)*u) = wod)
Y

Reals

(d) In tensor caleulations the maze of indices often makes one lose sight
of the very grest differences betwecen yarious types of gquantities which can
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be represented by tensors, for example, vectors tangent to a space,
mappings between such vectors, geometric structures on the tangent spaces.

(e) It is often quite difficult using tensor methods to discover the deeper
invariants in geometric and physical situations, even the local ones. Using
exterior forms, they seem to come naturaily according to these principles:

(i) All local geometric relations arise one way or another from the
equality of mixed partials, i.e., Poincaré’s Lemma.

(ii) Local invariants themselves usually appear as the result of applying
exterior differentiation to everything in sight.

{iii) Global relations arise from integration by parts, i.e., Stokes’
theorem.

(iv) Existence problems which are not genuine partial differential
equations (boundary value or Cauchy problems) generally are of the type of
Frobenius-Cartan—Ksahler system of exterior differential forms and can be
reduced thereby to systems of ordinary equations.

(f) In studying geometry by tensor methods, one is invariably restricted
to the naiural frames associated with a local coordinate system. Let us
consider a Riemannian geometry as a case in point. This consists of a
manifold in which a Euclidean geometry has been imposed in each of the
tangent spaces. A natural frame leads to an oblique coordinate system in
each tangent space. Now who in his right mind would study Euclidean
geometry with oblique coordinates? Of course the orthonormal coordinate
systems are the natural ones for Euclidean geometry, so they must be the
correct ones for the much harder Riemannian geometry. We are led to
introduce moving frames, a method which goes hand-in-glove with exterior
forms.

We conclude the case by stating our opinion, that exterior calculus is here
to stay, that it will gradually replace tensor methods in numerous situations
where it is the more natural tool, that it will find more and more applications
because of its inner simplicity, body of substantial results begging for further
use, and because it simply is there wherever integrals occur. There is
generally a time lag of some fifty years between mathematical theories and
their applications. The mathematicians H. Poincaré, E. Goursat, and K.
Cartan developed the exterior calculus in the early part of this century; in
the last twenty years it has greatly contributed to the rebirth of differential
geometry, now part of the mathematical r.ain stream. Physicists are begin-
ning to realize its usefulness; perhaps it will soon make its way into
engineering.
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Exterior Algebra

2.1. The Space of p-Vectors
Notation:
R = field of real numbers a,b,¢, - - - .

L = an n-dimensional vector space over R with elements o, By

For each p =0,1,2, - - -, n we shall construct a new vector space
AL
over R, called the space of p-vectors on L. We begin with
/\0 L =R, /\‘ L=1L,

Next we shall work out /\2 L in some detail. This space consists of all sums

Y ao; A B)
subject only to these constraints, or reduction rules, and no others:
(@10 + a205) A B — a0y A B) —ay(x, A B)=0,
a A (B1By +b38,) — byl A By) —by(x A B,) =0,
ana=0,
aAB+BAa=0.

Here a, f3, etc., are vectors in L and a, b, ete., are real numbers; « A B is called
the exterior product of the vectors « and . If « and B are dependent, say
B = ca, then

aAf=aAn(ca)=clana)=c0=0

according to our reductions. Otherwise ¢ A B # 0.
Suppose ¢, +++, 0" is a basis of L. Then

a=Yao, B=3Y bl
xAB= (3 aio) A (3 b0)) =Y ad,c' A o).
We rearrange this as follows. Each term o' A 6' =0 and each ¢/ A ¢’ =
—a' Aol for i <j. Hence

aAB= Y (ap; —ap)s' Aol
i<j

]
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The typical element of /\z L is a livear combination of such exterior pro-
ducts, hence the 2-vectors

4 i + -
o' Aol T <9<

form a basis of /\z L. We conclude
gim AFL =220 (”)

A

n,

2 2/

In general, we form /\\’ L (2 £ p £ n) by the same idea. It consists of
all formal sums (p-vectors, or vectors of degree p)

Safag Ao Aay)

subject only to these constraints:

() (@+bf)rna,n - rea, ‘
=a{l@ A, A r A FBB A A Ay,
and the same if any «, is replaced by a linear combination.
() 2 A -+ A a, =0 if for some pair of indices  # j, 2, = «;.
(i) @; A -+ A 2, changes sign if any two a; are interchanged.
It follows easily from (i) that ay A + - A a, is linear in each variablie; we may

replace any variable by a linear combination of any number {not just two)
of other vectors and compute the value by distributing, for example

a A (byfy+ DB +03B) Ay AS
=ba AP AYAS) +baABsAyand)+bilanfynrnad)
It follows from (iii) that if x is any permutation of the {1, 2, - -+, p}, then
Upezy AN "7 A gy = (8ZRT) A A 0 A,
Exactly as in the case p = 2, we can show that if
', -+, 0"
is a basis of L, then a basis of /\” L is made up as follows. for each set of
indices
H = {hy,hy, -, b}, 1ghy<h,< -+ <h,<n,
ol =coM A .- Ad.

Then the totality of ¥ is a basis of /\‘P’ L. We concluds that

dim /\’L = (n),

vy

the number of combinations of » things taken p at a time. In particular

dim/\"L: 1.

wo set



2.2. DETERMINANTS 7
If A is in /\’ L, then
A=Y ayol,
T

summed over all of these ordered sets H.  Oue can also sum over all p-tuples
of indices by introducing skew-syrametric coefficients:

i=1 Y b,

] Ld
Py,

N A AT
»

»

where the b, ..., isa skew-symmetric tensor and
bkl"'hp':a’ﬂ fOr H={h1’.”)hp}, hx<h2<“'<hp.
This skew-symmetric representation is often quite useful.

Let us note why we do not define /\" L for p > #. (Sometimes it is
convenient to simply set /\" L=20 for p>n) We express each ¢ in a
product a, A *-* A &, a8 a linear combination of the basis vectors ¢?, - -+, ¢”
and completely distribute according to Rule (i). This leads to

= ] h
o A Ao, =33, ., 6" A A ahr,

Each term 6™ A - -+ A 6" is a product of p > u vectors taken from the set
a', - -+, ¢" so there must be a repetition; by Rule (ii} it vanishes. We are
left with @, A - -+ A «, = 0 as the only possibility.

‘We close with a very importent property of the spaces /\" L.

In order to define a linear mapping f on /\” L it suffices to present a
function g of p variables on L such that (ij ¢ is linear in each variable
separately, (ii) g ig alternating in the sense that ¢ vanishes when two of its
variables are equal and g changes sign when two of its variables are inter-
changed. Then

f(alA e Aap)=g(a1:“'aap)

defines f on the generators of A’ L.

It can be shown that this property provides an axiomatic characterization
of /\" L. In the next section we apply this property to define the deter-
minant of a linear transformation.

2.2. Determinants

As above L is a fixed linear space of dimension n. Let 4 be a linear
transformation on L into itself. We define a funcsion g = ¢, of » variables
on L as follows:

gA(ala"’san)=A“1/\ e AAOC,',

g0 X"'L— A"L
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where X" L denotes the cartesian product. Since g is multilinear and
alternating, there is a linear functional f = f,,

fo AN'L— AL
satisfying

Faloay Ao A =galag, oo o) =Aag Ao A A,

But /\" L is one-dimensional so the only linear transformation on this space
is multiplication by a scalar. We denote the particular one here by |4]|
and have
Aoy A -o- A Ao, =1Aloy A -0 A ).
This serves to define the determinant [A| of A. We must not fail to note
that this definition is completely independent of a matrix representation
of A.
We observe next
|ABl(xy A -+ A a,) = (ABoy) A -+ A (ABa,)
= |A|{Boty A * -+ A Ba,)
= lAllBl(al AT A an)’
hence
|4B| = |4]"|B|.
We can relate this to the determinant of a matrix as follows. Let
¢!, - -+, 0" be a basis of L and [la;;}| an n x » matrix. Set

a =3 a0
Then
Ay A A= aylet A e A DT
In particular, if one obtains the matrix representation of 4 with respect to
the basis (¢') by
Ac' =Y a';0’,

then Act A - Add"=laljlet A - A, 4] = |a')|.

2.3, Exterior Products

We now observe that our spaces /\” L have a built-in multiplication process
called exterior multiplication and denoted by A for obvious reasons. We
multiply a p-veector y by a g-vector v to obtain a (p + g)-vector u A v (which
is 0 by definition if p + ¢ > n):

A (AL X (ATL) — AP*IL.

It suffices to define A on generators and use the basic principle at the end of
Section 1 to extend it to all p- and g-vectors:

(ay A A ) APy A AB)=a A A AB A AR,



