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Preface

This book is intended to be accessible to undergraduate students with two
years of typical mathematics experience, most likely meaning calculus with a little
linear algebra and differential equations. Thus, specifically, there is no assumption
of a background in abstract algebra or number theory, nor of probability, nor of
linear algebra. All these things are introduced and developed to a degree sufficient
to address the issues at hand.

We will address the fundamental problem of transmitting information ef-
fectively and accurately. The specific mode of transmission does not really play
a role in our discussion. On the other hand, we should mention that the importance
of the issues of efficiency and accuracy has increased largely due to the advent of
the internet and, even more so, due to the rapid development of wireless communi-
cations. For this reason it makes sense to think of networked computers or wireless
devices as archetypical fundamental practical examples.

The underlying concepts of information and information content of data
make sense independently of computers, and are relevant in looking at the operation
of natural languages such as English, and of other modes of operation by which
people acquire and process data.

The issue of efficiency is the obvious one: transmitting information costs time,
money, and bandwidth. It is important to use as little as possible of each of these
resources. Data compression is one way to pursue this efficiency. Some well
known examples of compression schemes are commonly used for graphics: GIFs,
JPEGS, and more recently PNGs. These clever file format schemes are enormously
more efficient in terms of filesize than straightforward bitmap.descriptions of graph-
ics files. There are also general-purpose compression schemes, such as gzip, bzip2,
ZIP, etc.

The issue of accuracy is addressed by detection and correction of errors
that occur during transmission or storage of data. The single most important
practical example is the TCP/IP protocol, widely used on the internet: one basic
aspect of this is that if any of the packets composing a message is discovered to be
mangled or lost, the packet is simply retransmitted. The detection of lost packets
is based on numbering the collection making up a given message. The detection
of mangled packets is by use of 16-bit checksums in the headers of IP and TCP
packets. We will not worry about the technical details of TCP/IP here, but only
note that email and many other types of internet traffic depend upon this protocol,
which makes essential use of rudimentary error-detection devices.

And it is a fact of life that dust settles on CD-ROMs, static permeates network
lines, etc. That is, there is noise in all communication systems. Human natural
languages have evolved to include sufficient redundancy so that usually much
less than 100% of a message need be received to be properly understood. Such

xi



xii Preface

redundancy must be designed into CD-ROM and other data storage protocols to
achieve similar robustness.

There are other uses for detection of changes in data: if the data in question is
the operating system of your computer, a change not initiated by you is probably
a’sign of something bad, either failure in hardware or software, or intrusion by
hostile agents (whether software or wetware). Therefore, an important component
of systems security is implementation of a suitable procedure to detect alterations
in critical files.

In pre-internet times, various schemes were used to reduce the bulk of commu-
nication without losing the content: this influenced the design of the telegraphic
alphabet, traffic lights, shorthand, etc. With the advent of the telephone and ra-
dio, these matters became even more significant. Communication with exploratory
spacecraft having very limited resources available in deep space is a dramatic ex-
ample of how the need for efficient and accurate transmission of information has
increased in our recent history.

In this course we will begin with the model of communication and mformahon
made explicit by Claude Shannon in the 1940’s, after some preliminary forays by
Hartley and others in the preceding decades.

Many things are omitted due to lack of space and time. In spite of their
tremendous importance, we do not mention convolutional codes at all. This is
partly because there is less known about them mathematically. Concatenated codes
are mentioned only briefly. Finally, we also omit any discussion of the so-called
turbo codes. Turbo codes have been recently developed experimentally. Their
remarkably good behavior, seemingly approaching the Shannon bound, has led to
the conjecture that they are explicit solutions to the fifty-year old existence results
of Shannon. However, at this time there is insufficient understanding of the reasons
for their good behavior, and for this reason we will not attempt. to study them here.
We do give a very brief introduction to geometric Goppa codes, attached to
algebraic curves, which are a natural generalization of Reed-Solomon codes (which
we discuss), and which exceed the Gilbert-Varshamov lower bound for performance.

The exercises at the ends of the chapters are mostly routine, with a few more
difficult exercises indicated by single or double asterisks. Short answers are given
at the end of the book for a good fraction of the exercises, indicated by ‘(ans.)’
following the exercise.

I offer my sincere thanks to the reviewers of the notes that became this volume.
They found many unfortunate errors, and offered many good ideas about improve-
ments to the text. While I did not choose to take absolutely all the advice given, I
greatly appreciate the thought and energy these people put into their reviews: John
Bowman, University of Alberta; Sergio Lopez, Ohio University; Navin Kashyap,
University of California, San Diego; James Osterburg, University of Cincinnati;
LeRoy Bearnson, Brigham Young University; David Grant, University of Colorado
at Boulder; Jose Voloch, University of Texas.

Paul Garrett
garrett@math.umn. edu
http://www.math.umn.edu/garrett/
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1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Probability

Sets and functions

Counting

Preliminary ideas of probability

More formal view of probability

Random variables, expected values, variance
Markov’s inequality, Chebysheff’s inequality
Law of Large Numbers

1.1 Sets and functions

Here we review some relatively elementary but very important terminology and
concepts about sets, in a slightly abstract setting.

Naively, a set is supposed to be a collection of ‘things’ (?) described by
‘listing’ them or prescribing them by a ‘rule’. Please note that this is not a precise
description, but will be adequate for most of our purposes. We can also say that a
set is an unordered list of different things.

There are standard symbols for some often-used sets:

¢ =
zZ =
Q =
R:
C =

{} = empty set = set with no elements
the integers

the rational numbers

the real numbers

the complex numbers

A set described by a list is something like

S ={1,2,3,4,5,6,7,8}

1



2 Chapter 1 Probability

which is the set of integers greater than 0 and less than 9. This set can also be
described by a rule like

§=1{1,2,3,4,5,6,7,8} = {z: z is an integer and 1 < z < 8}
This follows the general format and notation
{z : z has some property}

If z is in a set S, then write € S or § O z, and say that z is an element of S.
Thus, a set is the collection of all its elements (although this remark only explains
the language). It is worth noting that the ordering of a listing has no effect on a set,
and if in the listing of elements of a set an element is repeated, this has no effect.

For example,
{1,2,3} ={1,1,2,3} = {3,2,1} = {1,3,2,1}

A subset T of a set S is a set all of whose elements are elements of S. This
iswritten T C Sor S DT. Soalways SC Sand¢ CS. T CSand T # ¢
and T # S, then T is a proper subset of S. Note that the empty set is a subset of
every set. For a subset T of a set S, the complement of T (inside S) is

T¢=8-T={seS:s¢T}

Sets can also be elements of other sets. For example, {Q,Z,R,C} is the set
with 4 elements, each of which is a familiar set of numbers. Or, one can check that

{{1,2},{1,3},{2,3}}

is the set of two-element subsets of {1,2,3}.

The intersection of two sets A, B is the collection of all elements which lie in
both sets, and is denoted AN B. Two sets are disjoint if their intersection is ¢. If
the intersection is not empty, then we may say that the two sets meet. The union
of two sets A, B is the collection of all elements which lie in one or the other of the
two sets, and is denoted AU B.

Note that, for example, 1 # {1}, and {{1}} # {1}. That is, the set {a} with
sole element a is not the same thing as the item a itself.

An ordered pair (r,y) is just that, a list of two things in which there is a
first thing, here z, and a second thing, here y. Two ordered pairs (z,y) and (z',3')
are equal if and only if z = 2’ and y = /.

The (cartesian) product of two sets A, B is the set of ordered pairs (a,b)
where a € A and b € B. It is denoted A x B. Thus, while {a,b} = {b,a} might be
thought of as an unordered pair, for ordered pairs (a,b) # (b,a) unless by chance
a=hb

In case A = B, the cartesian power A x B is often denoted A%. More generally,
for a fixed positive integer n, the n'® cartesian power A™ of a set is the set of
ordered n-tuples (ai,as,...,a,) of elements a; of A.

Some very important examples of cartesian powers are those of R or Q or C, -
which arise in other contexts as well: for example, R? is the collection of ordered



1.1 Sets and functions 3

pairs of real numbers, which we use to describe points in the plane. And R3 is
the collection of ordered triples of real numbers, which we use to describe points in
three-space.

The power set of a set S is the set of subsets of S. This is sometimes denoted
by PS. Thus,

Po = {¢}
P{172} = {¢,{1},{2},{1,2}}

Intuitively, a function f from one set A to another set B is supposed to be
a ‘rule’ which assigns to each element a € A an element b = f(a) € B. This is
written as

f:A—- B

although the latter notation gives no information about the nature of f in any
detail.

More rigorously, but less intuitively, we can define a function by really telling
its graph: the formal definition is that a function f : A — B is a subset of the
product A x B with the property that for every a € A there is a unique b € B so
that (a,b) € f. Then we would write f(a) = b.

This formal definition is worth noting at least because it should make clear that
there is absolutely no requirement that a function be described by any recognizable
or simnple ‘formula’.

Map and mapping are common synonyms for function.

As a silly example of the formal definition of function, let f : {1,3} — {2,6}
be the function ‘multiply-by-two’, so that f(1) = 2 and f(3) = 6. Then the ‘official’
definition would say that really f is the subset of the product set {1,3} x {2,6}
consisting of the ordered pairs (1,2), (3,6). That is, formally the function f is the
set

f = {(L 2)7 (3’ 6)}

Of course, no one usually operates this way, but it is important to have a precise
meaning underlying more intuitive usage.

A function f : A — B is surjective (or onto) if for every b € B there is
a € A so that f(a) = b. A function f : A — B is injective (or one-to-one) if
f(a) = f(a') implies a = a’. That is, f is injective if for every b € B there is at
most one a € A so that f(a) = b. A map is a bijection if it is both injective and
surjective.

The number of elements in a set is its cardinality. Two sets are said to have
the same cardinality if there is a bijection between them. Thus, this is a trick
so that we don’t have to actually count two sets to see whether they have the same
number of elements. Rather, we can just pair them up by a bijection to achieve
this purpose.

Since we can count the elements in a finite set in a traditional way, it is clear
that a finite set has no bijection to a proper subset of itself. After all, a proper
subset has fewer elements.
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By contrast, for infinite sets it is easily possible that proper subsets have bijec-
tions to the whole set. For example, the set A of all natural numbers and the set
E of even natural numbers have a bijection between them given by

n—2n

But certainly E is a proper subset of A! Even more striking examples can be
arranged. In the end, we take as the definition that a set is infinite if it has a
bijection to a proper subset of itself.

Let f: A — B be a function from a set Atoaset B,andlet g: B— C bea
function from the set B to a set C. The composite function g o f is defined to
be

(g0 f)la) = g(f(a))

for a € A.

The identity function on a non-empty set S is the function f : § — S so
that f(a) = a for all a € A. Often the identity function on a set S is denoted by
ids.

Let f: A — B be a function from a set A to a set B. An inverse function
g: B — Afor f (if such g exists at all) is a function so that (f o g)(b) = b for all
b e B, and also (g o f)(a) = a for all a € A. That is, the inverse function (if it
exists) has the two properties

fog=1idp gof=ida

An inverse function to f, if it exists at all, is usually denoted f~!. (This is not at
all the same as 1/ f!)

Proposition: A function f : A — B from a set A to a set B has an inverse if
and only if f is a bijection. In that case, the inverse is unique (that is, there is only
one inverse function).

Proof: Suppose that f : A — B is a bijection. We define a function g : B — A
as follows. Given b € B, let a € A be an element so that f(a) = b. Then define
g(b) = a. Do this for each b € B to define g. Note that we use the surjectivity to
know that there exists an a for each b and we use the injectivity to be sure of its
uniqueness.

To check that g o f = ida, compute: first, for any a € A, f(a) € B. Then
g(f(a)) is, by definition, an element a’ € A so that f(a’) = f(a). Since f is injective,
it must be that @' = a. To check that f o g = idp, take b € B and compute: by
definition of g, g(b) is an element of A so that f(g(b)) = b. But that is (after all)
just what we want.

On the other hand, suppose that for f : A — B there is g : B — A such that
gof =ida and fog = idp, and show that f is bijective. Indeed,if f(a1) = f(a2),
then apply g to both sides of this equality to obtain

a1 = ida(a1) = g(f(a1)) = 9(f(a2)) = a2
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This proves injectivity of f. For surjectivity, given b € B,
f(g(b)) =idp(b) = b

This completes the proof that if f has an inverse then it is a bijection. /Y

1.2 Counting

Here we go through various standard elementary-but-important examples of count-
ing as preparation for finite probability computations. Of course, by ‘counting’ we
mean structured counting.

Example: Suppose we have n different things, for example the integers from 1 to
n inclusive. The question is how many different orderings or ordered listings

i17i27i3’ v y’in—lyi‘n

of these numbers are there? Rather than just tell the formula, let’s quickly derive
it. The answer is obtained by noting that there are n choices for the first thing 4,
then n — 1 remaining choices for the second thing i» (since we can’t reuse whatever
i1 was), n— 2 remaining choices for i3 (since we can’t reuse i; nor i, whatever they
were!), and so on down to 2 remaining choices for i,,_; and then just one choice for

in. Thus, there are
n-{n—-1)-n—-2)-...-2-1

possible orderings of n distinct things. This kind of product arises often, and there
is a notation and name for it: n-factorial, denoted n!, is the product

nl=n-(n-1)-(n—2)-...-2-1
It is an important and useful convention that
ol=1

The factorial n! is defined only for non-negative integers.

Example: How many ordered k-tuples of elements can be chosen (allowing
repetition) from a set of n things? There are n possibilities for the first choice. For
each choice of the first there are n choices for the second. For each choice of the
first and second there are n for the third, and so on down to n choices for the kt?
for each choice of the first through (k — 1)*®. That is, altogether there are

anX...X’Il:TLk
N e’

k

ordered k-tuples that can be chosen from a set with n elements.

Example: How many ordered k-tuples of distinct elements can be chosen from
a set of n things? (In a mathematical context distinct means all different from each
other.) There are n possibilities for the first choice. For each choice of the first



