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PREFACE

The principal aim in writing this book has been to provide an intro-
duction, barely more, to some aspects of Fourier series and related tbpios
in which a liberal use is made of modern techniques and which guides the
reader toward some of the problems of current interest in harmonic analysis
generally. The use of modern concepts and techniques is, in fact, a8 wide-
spread as is deemed to be compatible with the desire that the book shall
be useful to senior undergraduates and beginning graduate students, for
whom it may perhaps serve as preparation for Rudin’s Harmonic Analysis
on Groups and the promised second volume of Hewitt and Ross’s Abstract
Harmonic Analysis.

The emphasis on modern techniques and outlook has affected not only
the type of arguments favored, but also to a considerable extent the choice
of material. Above all, it has led to a minimal treatment of pointwise con-
vergence and summability: as is argued in Chapter 1, Fourier series are not
necessarily seen in their best or most natural role through pointwise-tinted
spectacles. Moreover, the famous treatises by Zygmund and by Bary on
trigonometric series cover these aspects in great detail, while leaving some
gaps in the presentation of the modern viewpoint; the same is true of the
more elementary account given by Tolstov. Likewise, and again for reasons
discussed in Chapter 1, trigonometric series in general form no pa.rt of the
program attempted.

A considerable amount of space has been devoted to matters that cannot
in a book of this size and scope receive detailed treatment. Among such
material, much of which appears in small print, appear comments on diverse
specialized topics (capacity, spectral synthesis sets, Helson sets, and so
forth), as well as remarks on extensions of results to more general groups.
The object in including such material is, in the first case, to say enough for
the reader to gain some idea of the meaning and significance of the problems
involved, and to provide a guide to further reading; and in the second case,
to provide some sort of ‘“cultural” background stressing a unity that
underlies apparently diverse fields. It cannot be over-emphasized that the
book is perforce introductory in all such matters.

The demands made in terms of the reader’s active cooperation increase
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viii PREFACE

fairly steadily with the chapter numbers, and although the book is surely
best regarded as a whole, Volume I is self-contained, is easier than Volume II,
and might be used as the basis of a short course. In such a short course, it
would be feasible to omit Chapter 9 and Section 10.6.

As to specific requirements made of the reader, the primary and essential
item is a fair degree of familiarity with Lebesgue integration to at least
the extent described in Williamson’s introductory book Lebesgue Integration.
Occasionally somewhat more is needed, in which case reference is made to
Appendix C, to Hewitt and Stromberg’s Real and Abstract Analysis, or to
Asplund and Bungart’s 4 First Course in Integration. In addition, the
reader needs to know what metric spaces and normed linear spaces are, and
to have some knowledge of the rudiments of point-set topology. The remain-
ing results in functional analysis (category arguments, uniform boundedness
principles, the closed graph, open mapping, and Hahn-Banach theorems)
are dealt with in Appendixes A and B. The basic terminology of linear
algebra is used, but no result of any depth is assumed.

Exercises appear at the end of each chapter, the more difficult ones being
provided with hints to their solutions.

The bibliography, which refers to both book and periodical literature,
contains many suggestions for further reading in almost all relevant directions
and also a sample of relevant research papers that have appeared since the
publication of the works by Zygmund, Bary, and Rudin already cited.
Occasionally, the text contains references to reviews of periodical literature.

My first acknowledgment is to thank Professors Hanna Neumann and
Edwin Hewitt for encouragement to begin the book, the former also for the
opportunity to try out early drafts of Volume I on undergraduate students
in the School of General Studies of the Australian National University, and
the latter also for continued encouragement and advice. My thanks are due
also to the aforesaid students for corrections to the early drafts.

In respect to the technical side of composition, I am extremely grateful
to my colleague, Dr. Garth Gaudry, who read the entire typescript (apart
from last-minute changes) with meticulous care, made innumerable valuable
suggestions and vital corrections, and frequently dragged me from the
brink of disaster. Beside this, the compilation of Sections 13.7 and 13.8
and Subsection 13.9.1 is due entirely to him. Since, however, we did not
always agree on minor points of presentation, I alone must take the blame
for shortcomings of this nature. To him I extend my warmest thanks.

My thanks are offered to Mrs. Avis Debnam, Mrs. K. Sumeghy, and Mrs.
Gail Liddell for their joint labors on the typescript.

Finally, I am deeply in debt to my wife for all her help with the proof-
reading and her unfailing encouragement.

R.E E.
CANBERRA, 1967
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CHAPTER 1

Trigonometric Series and Fourier Series

1.1 The Genesis of Trigonometric Series and Fourier Series

1.1.1. The Beginnings. D. Bernoulli, D’Alembert, Lagrange, and Euler,
from about 1740 onward, were led by problems in mathematical physics to
consider and discuss heatedly the possibility of representing a more or less
arbitrary function f with period 2= as the sum of a trigonometric series of the
form

Lhas + z (a, cos nz + b, sin nx), (1.1.1)
A=l .
or of the formally equivalent series in its so-called ‘‘complex” form

> caet, (1.1.1%)

A= — O

in which, on writing b, = 0, the coefficients c, are given by the formulae
Cp = I/Z(an —1b,), ¢, = 1/2(“;\ + 1b,) r=0,1,2,...).

This discussion sparked off one of the crises in the development of analysis.

Fourier announced his belief in the possibility of such a representation in
1811. His book Théorie Analytique de la Chaleur, which was published in
1822, contains many particular instances of such representations and makes
widespread heuristic use of trigonometric expansions. As a result, Fourier’s
name is customarily attached to the following prescription for the coefficients
a,, b,, and c,:

a, = %f f@)cos nzdz, b, = ;lrf' f@)sinnzdz, (1.1.2)

n = % f:j(z)e“"‘ dz, (1.1.2%)

the a, and b, being now universally known as the “real,” and the ¢, as the
‘“complex,” Fourier coefficients of the function f (which is tacitly assumed to
be integrable over (—m, #)). The formulae (1.1.2) were, however, known
earlier to Euler and Lagrange.

1



2 TRIGONOMETRIC SERIES AND FOURIER SERIES

The grounds for adopting Fourier’s prescription, which assigns a definite
trigonometric series to each function f that is integrable over (—m, #), will
be scrutinized more closely in 1.2.3. The series (1.1.1) and (1.1.1*), with the
coefficients prescribed by (1.1.2) and (1.1.2*), respectively, thereby assigned
to f are termed the “‘real” and ““complex’ Fourier series of f, respectively.

During the period 1823-1827, both Poisson and Cauchy constructed proofs
of the representation of restricted types of functions f by their Fourier series,
but they imposed conditions which were soon shown to be unnecessarily
stringent.

It seems fair to credit Dirichlet with the beginning of the rigorous study of
Fourier series in 1829, and with the closely related concept of function in
1837. Both topics have been pursued with great vigor ever since, in spite of
more than one crisis no less serious than that which engaged the attentions
of Bernoulli, Euler, d’Alembert, and others and which related to the pre-
vailing concept of functions and their representation by trigonometric series.
(Cantor’s work in set theory, which led ultimately to another major crisis,
had its origins in the study of trigonometric series.)

1.1.2. The rigorous developments just mentioned showed in due course
that there are subtle differences between trigonometric series which converge
at all points and Fourier series of functions which are integrable over (~, m),
even though there may be no obvious clue to this difference. For example, the

trigonometric series
i sin nx
logn

n=2

converges everywhere; but, as will be seen in Exercise 7.7 and again in 10.1.8,
it is not the Fourier series of any function that is (Lebesgue-)integrable over
{(—m, m). :

The theory of trigonometric series in general has come to involve itself
with many questions that simply do not arise for Fourier series. For the
express purpose of attacking such questions, many techniques have been
evolved which are largely irrelevant to the study of Fourier series. It thus
comes about that Fourier series may in fact be studied quite effectively
without reference to general trigonometric series, and this is the course to be
adopted in this book. '

The remaining sections of this chapter are devoted to showing that, while
Fourier series have their limitations, general trigonometric series have others
no less serious; and that there are well-defined senses and contexts in which
Fourier series are the natural and distinguished tools for representing functions
in useful ways. Any reader who is prepared to accept without question the
restriction of attention to Fourier series can pass from 1.1.3 to the exercises
at the end of this chapter.
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1.1.3. The Orthogonality Relations. Before embarking upon the
discussion promised in the last paragraph, it is necessary to record some facts
that provide the heuristic basis for the Fourier formulae (1.1.2) and (1.1.2%)
and for whatever grounds there are for according a special role to Fourier
series.

These facts, which result from straightforward and elementary calcula-
tions, are expressed in the following so-called orthogonality relations satisfied
by the circular and complex exponential functions:

1 (= 0 (m#n,m>0n20),
2—J. cos mx cos nx dx = { s (m=mn>0),
m

ot 1 fm=mn=0)

1 (= 0 (m#n,mz0,n>0)
— i i dx = 1/ (m =N > O),
) f- sin mx sin nx A
TJex 0 (m=n=0) » (1.1.3)
1 $.3
—f cos mxsinnx dz = 0,
27 ~-x.
l * fmx ,-inx — 0 (m # n)
5 ). eimz ¢ dx = 1 (m = n): )

in these relations m and n denote integers, and the interval [—, 7] may be
replaced by any other interval of length 2.

1.2 Pointwise Representation of Functions by Trigonometric
Series

1.2.1. Pointwise Representation. The general theory of trigonometric
series was inaugurated by Riemann in 1854, since when it has been pursued
with vigor and to the great enrichment of analysis as a whole. For modern
accounts of the general theory, see (Z,], Chapter IX and [Ba, j], Chapters
XII-XV.

From the beginning a basic problem was that of representing a more or
less arbitrary given function f defined on a period-interval I (say the interval
[ =, 7]) as the sum of at least one trigonometric series (1.1.1), together with a
discussion of the uniqueness of this representation.

A moment's thought will make it clear that the content of this problem
depends on the interpretation assigned to the verb ‘“‘to represent’’ or, what
comes to much the same thing, to the term ‘“‘sum’ as applied to an infinite
series. Initially, the verb was taken to mean the pointwise convergence of the
series at all points of the period interval to the given function f. With the
passage of time this interpretation underwent modification in at least two
ways. In the first place, the demand for convergence of the series to f at all
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points of the period-interval I was relaxed to convergence at almost all
points of that interval. In the second place, convergence of the series to f at
all or almost all points was weakened to the demand that the series be
summable to f by one of several possible methods, again at all or almost all
points. For the purposes of the present discussion it will suffice to speak of
just one such summability method, that known after Cesaro, which consists
of replacing the partial sums

$o(z) = Ypa,,

N
sy(z) = Yoa, + z (@, cos nx + b, sin nx) (N=1,2,...) (L21)

n=1
of the series (1.1.1) by their arithmetic means

_ 8 + -+ 8y

o =25 (N=012--.). (1.2.2)

Thus we shall say that the series (1.1.1) is summable at a point z to the
function f if and only if

lim oy(z) = f(z).
N—x®

It will be convenient to group all these interpretations of the verb ‘““to
represent’”” under the heading of pointwise representation (everywhere or
almost everywhere, by convergence or by summability, as the case may be)
of the function f by the series (1.1.1).

In terms of these admittedly rather crude definitions we can essay a
bird’s-eye view of the state of affairs in the realm of pointwise representation,
and in particular we can attempt to describe the place occupied by Fourier
series in the general picture.

1.2.2. Limitations of Pointwise Representation. Although it is
undeniably of great intrinsic interest to know that a certain function, or
each member of a given class of functions, admits a pointwise representation
by some trigonometric series, it must be pointed out without delay that this
type of representation leaves much to be desired on the grounds of utility. A
mode of representation can be judged to be successful or otherwise useful as
a tool in subsequent investigations by estimating what standard analytical
operations applied to the represented function can, via the representation,
be expressed with reasonable simplicity in terms of the expansion coefficients
a, and b,. This is, after all, one of the main reasons for seeking a representation
in series form. Now it is a sad fact that pointwise representations are in
themselves not very useful in this sense; they are simply too weak to justify
the termwise application of standard analytical procedures.

Another inherent defect is that a pointwise representation at almost all
points of I is never unique. This is so because, as was established by Men’shov
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in 1916, there exist trigonometric series which converge to zero almost every-
where and which nevertheless have at least one nonvanishing coefficient;
see 12.12.8. (That this can happen came as a considerable surprise to the
mathematical community.)

1.2.3. The Role of the Orthogonality Relations. The a priori grounds
for expecting the Fourier series of an integrable function f to effect a point-
wise representation of f (or, indeed, to effect a representation in any reasonable
sense) rest on the orthogonality relations (1.1.3). It is indeed a simple
consequence of these relations that, if there exists any trigonometric series
(1.1.1) which represents f in the pointwise sense, and if furthermore the sy (or
the o) converge dominatedly (see (W], p. 60) to f, then the series (1.1.1)
must be the Fourier series of f. However, the second conditional clause
prevents any very wide-sweeping conclusions being drawn at the outset.

As will be seen in due course, the requirements expressed by the second
conditional clause are fulfilled by the Fourier series of sufficiently smooth
functions f (for instance, for those functions f that are continuous and of
bounded variation). But, alas, the desired extra condition simply does not
obtain for more general functions of types we wish to consider in this book.
True, a greater degree of success results if convergence is replaced by summa-
bility (see 1.2.4). But in either case the investigation of this extra condition
itself carries one well into Fourier-series lore. This means that this would-be
simple and satisfying explanation for according a dominating role to Fourier
series can scarcely be maintained at the outset for functions of the type we
aim to study.

1.24. Fourier Series and Pointwise Representations. What has been
said in 1.2.3 indicates that Fourier series can be expected to have but
limited success in the pointwise representation problem. Let us tabulate a
little specific evidence.

The Fourier series of a periodic function f which is continuous and of
bounded variation converges boundedly at all points to that function. The
Fourijer series of a periodic continuous function may, on the contrary,
diverge at infinitely many points; even the pointwise convergence almost
everywhere of the Fourier series of a general continuous function remained
in doubt until 1966 (see 10.4.5), although it had been established much
earlier and much more simply that certain fixed subsequences of the sequence
of partial sums of the Fourier series of any such function is almost everywhere
convergent to that function (the details will appear in Section 8.6). The
Fourier series of an integrable function may diverge at all points.

If ordinary convergence be replaced by summability, the situation
improves. The Fourier series of a periodic continuous function is uniformly



(] TRIGONOMETRIC SERIES AND FOURIER SERIES

summable to that function. The Fourier series of any periodic integrable
function is summable at almost all points to that function, but in this case
neither the sy nor the oy need be dominated.

1.2.5. Trigonometric Series and Pointwise Representations. Having
reviewed a few of the limitations of Fourier series vis-a-vis the problem of
pointwise representation, we should indicate what success is attainable by
using trigonometric series in general.

In 1915 both Lusin and Privalov established the existence of a pointwise
representation almost everywhere by summability methods of any function f
which is measurable and finite almost everywhere. For 25 years doubts
lingered as to whether summability could here be replaced by ordinary
convergence, the question being resolved affirmatively by Men’shov in 1940.
This result was sharpened in 1952 by Bary, who showed that, if the function
f is measurable and finite almost everywhere on the interval I, there exists a
continuous function F such that F'(z) = f(z) at almost all points of I, and
such that the series obtained by termwise differentiation of the Fourier
series of F' converges at almost all points x of I to f(z). Meanwhile Men’shov
had in 1950 shown also that to any measurable f (which may be infinite on a
set of positive measure) corresponds at least one trigonometric series (1.1.1)
whose partial sums sy have the property that limy_, 8y = f in measure on
I. This means that one can write 8y = uy + vy, where uy and vy are finite-
valued almost everywhere, limy , », uy(z) = f(z) at almost all points z of I,
and where, for any fixed ¢ > 0, the set of points z of I for which |vy(z)| >
has a measure which tends to zero as N — c0. (The stated condition on the
vy is equivalent to the demand that

lim [* 2l 42

oo Joa T o] — 0

and the circuitous phrasing is necessary because f may take infinite values
on a set of positive measure.) This sense of representation is weaker than
pointwise representation. For more details see [Ba,], Chapter XV.

These theorems of Men'shov and Bary lie very deep and represent enormous
achievements. However, as has been indicated at the end of 1.2.2, the
representations whose existence they postulate are by no means unique.

Cantor succeeded in showing that a representation at all points by a
convergent trigohometric series is necessarily unique, if it exists at all.
Unfortunately, only relatively few functions f admit such a representation:
for instance, there are continuous periodic functions f that admit no such
representation. (This follows on combining a theorem due to du Bois-Reymond
and Lebesgue, which appears on p. 202 of [Ba,], with results about Fourier
series dealt with in Chapter 10 of this book.) It is indeed the case that, in a
sense, “‘most’’ continuous functions admit no representation of this sort.



