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Preface

THRoOUGHOUT the two major epochs in human history, in both the mechanical
age and now the systems age, mankind has been beset with the arduous
problem of optimal utilization of the usually limited resources in accomplish-
ing the variegated tasks or objectives. The problem is thus not new although
contemporary manifestations of this problem in forms such as the energy
crisis or inflation may proffer it that coloration. Further, the problem appears
recurrent and eternal. An attempt to cope with such problems demands that
one develop some plan or schedule. The analysis and study of such plans
particularly, with respect to their optimality and other properties under
various scenarios of objectives and constraints, constitutes an exciting field
known as Scheduling Theory. This theory thus deals with a concretization of
continuing human experience.

The purpose of the book is, however, not a prosaic rendition of history.
Rather, it is an attempt to syphon out of both the mechanical age (when man
was building machines to analyze and do work) and the systems age (when the
synthesis of the total problem and interrelationships are the focus of
attention) certain pervasive problems that occur and are important enough to
warrant the focus of our attention. We then present the kernel of these
problems in mathematical terms and devise mathematical solutions to them.
As always, we study their intrinsic properties and, whenever we can, generalize
to other situations. Similar objectives appear in numerous works in the field.
What we have done that is unique is to integrate our experiences of over two
decades of research work in the field, from different vistas of experience with
problems and techniques into one compendium.

The book is particularly timely. First, as we said, the problem of scheduling
is a perennial one and nearly as old as history. Second, mankind is currently
going through a special period in which critical shortages of important
resources needed to continue civilization have been flung to the limelight. The
plea to conserve is not only a plea to schedule one’s consumption. It is more
than that. It is also a plea for efficient utilization of available resources
including optimal combinations of resources. These~are issues of central
interest in scheduling theory. Third, the existing books in the field are either
considerably outdated or are severely limited in their scope of treatment.
Fourth, the problem of optimal systems design and control bears striking
interdependence with that of optimal scheduling.

We have attempted to capture the essential problems in scheduling as well

v



vi Preface

as treat them via the most effective techniques. We have introduced material in
this book that are considerably current, novel, and well researched.
Sometimes, these techniques and problems have not even appeared in the
open literature. Other times, they may have only appeared in the form of
technical reports of some research institute or in scientific journals. Further,
we have exploited our familiarity with the literature of such fields as
mathematics, economics, operations research, management science, com-
puter science, engineering and medicine, to motivate our problems and
methods of attack.

This book does not and is not intended to discuss everything there is to
know about scheduling. For example, dynamic problems involving stochastic
drrival times of jobs are not considered. Inclusion of such topics here would
have led to a much lengthier book than this one or to the sacrifice of the depth
of coverage of each of the topics in this book. We decided to err on the side of
depth than breadth.

This book is intended as a graduate text or reference work in a course
usually entitled Scheduling Theory or Control Theory in most universities’
departments of mathematics, operations research, management science,
computer science or engineering. It will also be useful to economists and
planners. It gives an almost didactic treatment of the subject. The central
techniques employed can be picked up along the way although previous
familiarity with dynamic programming and integer programming is useful
particularly with the advanced algorithms. The reader will find the exercises at
the end of each chapter instructive and challenging. The comments and
bibliography section will be useful in pursuing an in-depth study of the
material covered in each chapter.

The book consists of twelve chapters. It begins with network problems—a
very special subgroup of mathematical programming problems. The shortest-
path problem, one of the fundamental problems in mathematics, is the
problem of tracing a path of shortest length through a finite network. This
problem occurs in many fields and we devote the first two chapters to it. In
Chapter 1, we show how a simple dynamic programming argument yields a
fundamental nonlinear equation. Thus, dynamic programming converts a
combinatorial problem into an analytic one. Simple approximate techniques
yield upper and lower bounds for the solution of this equation. These bounds
can be easily interpreted in terms of approximate policies. We also exploit
such bounds and other fathoming criteria suggested by branch and bound
strategies to solve large-scale traveling-salesman problems. Applications to
control theory and other parts of the calculus of variations are also discussed.
In Chapt >r 2 we show that this problem can be used to treat many problemsin
_ artificial intelligence and that many popular mathematical games can be
interpreted in these terms. The role and use of computers is stressed.

In Chapter 3 we classify scheduling problems and briefly discuss their
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- solution approaches. The machine scheduling problem is the problem of
processing n items on m machines in an efficient manner. The problem is
remarkably difficult. We discuss the many methods that can be applied, and
give many examples. Among these methods are the branch and bound
method, backtrack programming, dynamic programming, and various com-
binatorial methods.

The only analytic result known is due to Selmer Johnson for the case of two
machines. If there are more than two machines, it is quite likely that no simple
analytic result exists. However, for the permutation flow-shop problem with
makespan objective, there have been many efficient analytic results under
some restricting conditions, as described in Chapter 7.

Since these are finite problems, it might be thought they could be handled by
enumeration, particularly with the speed of the digital computer. This is not
the case, mathematical analysis is definitely needed, to identify and/or extend
the solvable cases. Also we require an approximation method with guaranteed
accuracy, or with simple efficient heuristics.

To see this, two numbers are convenient to keep in mind. First of all,
10! = 3,628,800; secondly, a year has approximately 3 x 107 seconds.

Consequently, if each case takes one second to examine, we see that 10!
cases takes about a month. Since 20! is more than 10'° x 10!, we see that 20!
cases cannot be examined by enumeration. Even if each case requires only a
microsecond, it is not feasible to examine 20! cases. In combinatorial
problems of this type, it is not uncommon to meet numbers such as 100! or
1000!. Thus mathematical analysis, whenever possible, helps us reduce the
computational drain tremendously.

Chapters 4 through 6 discuss different problems and techniques of machine
sequencing. Chapter 5 discusses capacity expansion problems and introduces
the new technique of imbedded state space dynamic programming for
reducing dimensienality so that larger problems can be solved. Chapter 6
considers an important class of network problems with nonserial phase
structures and exploits dimensionality reduction techniques such as the
pseudo-stage concept, branch compression and optimal order elimination
methods to solve large-scale nonlinear network scheduling problems.

In Chapters 7 through 11 we consider the flow-shop scheduling problem
under different objectives and constraints. We present several novel analytic
resulis and employ various ingenious techniques of branch and bound
including backtrack programming, lexicographical search method and unified
multi-stage combinatorial algorithms. Applications to the increasingly im-
portant area of parallel processing are discussed. Approximate solutions for
these interesting cases are also presented. In Chapter 11 we address machine
scheduling problems involving sequence-dependent set-up times and present
novel efficient dynamic programming formulations especially for the three-
machine problem.
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The book is concluded with a chapter on the job-shop-scheduling problem.
Using the disjunctive graph viewpoint and the techniques of BAB, EXTBAB,
dynamic programming, important analytical and computational results are
derived.

What we have attempted in this work is to present a unified treatment of the
many problems and techniques of solution. We want to point out how many
problems exist in these domains and what opportunities there are. These are
new parts of applied mathematics. What is particularly interesting about these
problems is that they require a blend of analysis, algebra, topology, computer
science, and a knowledge of how the problems arise.

We are grateful to a long list of friends, colleagues, and graduate students
who have collaborated with us in various phases of our research efforts. In
particular, we acknowledge the contributions of Burton Corwin and Thomas
Morin.

RICHARD BELLMAN
Santa Monica, California

AUGUSTINE ESOGBUE
Atlanta, Georgia

IcHIRO NABESHIMA
Chofu-shi, Tokyo, Japan
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CHAPTER 1

Network Flow, Shortest Path and
Control Problems

1.1. Introduction

In this chapter we wish to discuss briefly an interesting class of problems with
wide ramifications. On the one hand, they can be viewed as abstractions and
natural generalizations of a control process. Furthermore, they provide us
withan entry into the rugged terrain of scheduling processes and into the study
of some other types of decision processes of combinatorial type, such as
pattern recognition and numerous other problems arising in the field of
artificial intelligence. The application of these ideas to artificial intelligence will
be given in Chapter 2. Finally, in our continuing quest for feasible compu-
tational procedures, they furnish considerable motivation for the creation of
sophisticated decomposition techniques based upon topological consider-
ations. We will do this in Section 1.16 when we make an application of these
techniques to the calculus of variations. Let us also mention that questions of
this nature occur more and more frequently in connection with the execution
of complex computer problems.

In abstract terms, we are interested in a discrete control process of the
following type: Let p be a generic element of a finite set S and T (p, g) be a family
of transformations with the property that T (p, g) € S whenever pe Sand ge D,
the decision space, again taken to be discrete. We wish to determine a sequence
of decisions, q,, q5,....,which transform p, the initial state, into py, a
specified state, in an optimal fashion.

We are really interested in questions of feasibility. However, in order to
handle this imprecise concept we narrow our sights and consider optimization.

A problem of great contemporary interest, the “routing problem”, is a
particular case of the foregoing. We will use it as our leitmotif.

1.2. The Routing Problem

Consider a set of N points, numbered 1, 2,. .., N, with N the terminal
point, as shown in Fig. 1.1.
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Fig. 1.1

We suppose that there exists a direct link between any two points i and j
which requires a time ¢;; to traverse, with t;; = 0,i=1,2,..., N. In all that
follows we take t;; > 0. What path do we pursue, starting at 1, passing through
some subsets of the points 2, 3,. .., N — 1, and ending at N, which requires a
minimum time?

Two possible paths are shown in Figs. 1.2 and 1.3. The first goes directly to
N; the second goes through every point always moving from a lower order
number to a higher order one before reaching N.

| N
o ]
Fic. 1.2
9 9
2 5 " 3
o
! 4 8 - e————C) N
o
3 6

FiG. 1.3

Analytically, we are required to minimize the expression
Tliyig- i) =ty +4, + .+t p (1.1)

where (iy, i3,. . . , i) is some subset of (2, 3,...,N—1).

Exercises

1. Does a minimizing path ever contain a loop, i.e. pass through the same point twice?
2. How many different admissible paths are there?
3. Can the problem presently be solved by direct enumeration with a digital computer for

N = 100? Assume that we can enumerate and compare paths at the rate of one per microsecond.
1.3. Dynamic Programming Approach

To treat this problem by means of dynamic programming, we imbed the
original problem within the family of problems consisting of determining the
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optimal path fromito N;i=1,2,...,N—1. Let
f; = minimum {ime to go fromitoN,i=1,2,...,N—=1, (L2

and set fy = 0. Then the principle of optimality yields the relation

fi=min[t;+f) i=12,...,N—1, (L.3)
J#i

with the “boundary condition” fy = 0.

This functional equation is different in form from the usual dynamic
programming equation, being implicit rather than explicit. Further, we note its
dependence on one (the current node) variable rather than two (the stage and
state) variables. The unknown function occurs on both sides of the equation
which means that the solution cannot be obtained by any direct iteration.
Consequently, some interesting analytic questions arise:

(@) Does (1.3) possess a solution?

(b) Does it possess a unique solution?

(c) Provided that it does possess a unique solution, how can the equation be

used to provide the optimal path?

(d) How can the solution be obtained computationally?

The question of computational feasibility is, as usual, the thorniest one and
one that forces us to consider new and alternate methods. Some aspects of this
question will be discussed now; others will be described in the references.

Exercises

i. Insome cases we are interested not only in the path of shortest time, but also in the next best
path and generally the kth best path. Let f;(2) be defined as time required to go from i to N
following a second best path. Obtain a functional equation similar in form connecting f; (2) and f;.

2. Similarly, obtain a functional equation for f; (k), the time associated with the kth best path.

3. Obtain a functional equation corresponding to (1.3) for the case where the time to go from i
to j depends upon the “direction”™ in which i is entered, which is to say upon the point from which i
is reached.

4. What is the form of the equation if we cannot go from every point to every other point?

1.4. Upper and Lower Bounds

Prior to a demonstration of the existence and uniqueness of the solution of
(1.3), let us show how easy it is to obtain upper and lower bounds for the
solution (or solutions) of (1.3). An “experimental proof ” of uniqueness is thus
available in any particular case if we can show computationally that the upper
and lower bounds coincide. '

MASA - B
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Let the sequence {¢{"},r = 0,1,2,. . . , be defined for each i in the following
fashion:

¢$0)=r_n*iqtija i=192’---’N_19 ¢w)=0*

J#Ei

SV =min[t;+¢P], i=1,2,...,N—1, ¢§%*V=0. . (14)
J#i

Let us recall that we are assuming that ¢;; > 0.
It is clear that ¢{” >0 and thus that

¢{" = min [t;; + ¢{”] 2 min,; = ¢{°. (1.5)
J#i j#i 1

Hence, inductively, :
PO <. .. <P <PtV <. ... (1.6)
Let us now show inductively that
o0 </ (1.7)
where f; is any nonnegative solution of (1.3). We have
¢ = min t; < min [t;;+£;] = £ (18)
j#i i#i

whence (1.7) follows from (1.4) via an induction.
Since the sequence {¢{”},r = 1,2,. . . ,isuniformly bounded and monotone
increasing, we have convergence for each i. Let

¢ = lim ¢{". (19)
Then (1.7) yields
¢ <f (1.10)

and (1.4) shows that ¢, is itself a solution. Hence, ¢, is a lower bound for any
solution.
To obtain an upper bound, let us introduce the sequence {y/{”} where

v9=ty, i=12,...,N,

yetY =min[6;+9), i=12....N. (111)
iti .
Then
WO =ty 2 min [t;+£] =1, (L12)
j#i

and again an induction establishes
yoOZyh > >y <. (1.13)



