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Preface

Although some of the fundamentals of the statics of rigid bodies were known to the mwmﬁm
of ancient Greece, no serious thought was given to the problem of the deformations of even the sl
structures until the time of the Renaissance. Then Leonarde da Vinci (1452-1519) and later ‘Gall
{1564-1642) became interested in the statics of deformable bodies and in the mechanical propertiel of
common engineering materials. Galileo’s book “Two New Sciences” presented the first written
discussion of the properties of structural materials and also the first treatment of the strength of beams.
Although some of Galileo’s conclusions do not agree with modern ideas, his early work stimulated con-
siderable interest in this new field. In 1678 Robert Hooke (1635-1702) formulated his very famous
and exceedingly simple relationship between force and deformation which was perhaps more influential
than any other single factor in the development of the theory of Strength of Materials. Hooke's law of
proportionality between deformation and force so greatly simplified mathematical analysis that there-

after progress in this field was quite rapid. Jacob Bernoulli (1654-1705) determined the differential .

equation of a laterally loaded bar, and later Leonard Euler (1707-1783) continued the study of hending
action of beams and also investigated the buckling of an axially compressed bar, The first compre-
hensive discussion of the fiber stresses in a laterally loaded beam was presented in 1776 by Coulomb
(1736-1806) and later this same author laid the foundations of the theory for the torsion of bars.
Navier (1785-1836) further clarified the problem of bending of beams, and it might perhaps be said
that Coulomb and Navier are largely responsible for the presentation of the material that today we
call Strength of Materials,

Chronologically, the development of the science of Strength of Materials followed largely after
the development of the laws of statics. Statics considered the external effects of a force acting on a body,
i.e. the tendency of the forces to change the state of motion of the body. Strength of Materials treats
the internal effects of the force, i.e. the state of deformation and stress set up within the boundaries of
the body. Briefly, the science of Strength of Materials provides a more comprehensive explanation of
the behavior of solids under load than the student has considered previously. Even so, there are many
important problems that are beyond the scope of an undergraduate course on this topic and they are
reserved for more sophisticated treatments offered in graduate courses under the names of Theory of
Elasticity, Theory of Elastic Stability, Theory of Plasticity, Photoelasticity, Theory of a Continuous
Media, and a host of other titles. The subject matter of many of these graduate courses is prerequisite
to carrying out an ever-increasing number of intricate design problems for industry and is even more
essential in research considerations.

This book is designed to supplement standard texts, primarily to assist students in acquiring
a more thorough knowledge and proficiency in this basic field. The contents are divided into chapters
covering duly-recognized areas of theory and study. Each chapter begins with a summary of the pertinent
definitions, principles and theorems, followed by graded sets of solved and supplementary problems.
Derivations of formulas and proofs of theorems are included among the solved problems. The problems
have been chosen and solutions arranged so that the principles are clearly established. They serve to
illustrate and amplify the theory, provide the repetition of basic principles so vital to effective teaching,
and bring into sharp focus those fine points without which the student continually feels himself on
unsafe ground.

The author is deeply indebted to his wife, Verna B. Nash, for her inspiration and continued

e



assistance in proofreading and in the preparation of the manuscript. He is also indebted to Mr. Roy W.
Gregory for painstaking work in the preparation of all drawings and to Mr. Henry Hayden for technical
assistance and typographical arrangement. Particular thanks are extended to Prof. Odd Albert of the
Polytechnic Institute of Brooklyn for many valuable suggestions and critical review of the entire

manuscript.

WirLiaM A. Nasn

Gainesville, Florida
September, 1957
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CHAPTER 1
Tension and Compression

INTERNAL El:‘FECTS OF FORCES

In this book we shall be concerned primarily with what might be called the internal
effects of forces acting on a body. The bodies themselves will no longer be considered
to be perfectly rigid as was assumed in statics; instead, the calculation of the defor-
mations of various shape bodies under a variety of loads will be one of the primary con-
cerns of this study of strength of materials.

-~

AXIALLY LOADED BAR. Perhaps the simplest case to consider at the start will be that of

an initially straight metal bar of constant cross-section loaded at
its ends by a pair of oppositely directed collinear forces coinciding with the longitu-~
dinal axis of the bar and acting through the centroid of each cross-section. For static
equilibrium the magnitudes of the forces must be equal. If the forces are directed away
from the bar, the bar is said to be in tension, if they are directed toward the bar, a
state of compression exists. These two conditions are illustrated in Figure 1. Under the
action of this pair of applied forces, internal resisting forces are set up within the
bar and their characteristics may be studied by imagining a plane to be passed through
the bar anywhere along its length and oriented perpendicular to the longitudinal axis of
the bar. Such a plane is designated as a-a in Figure 2a. For reasons to be discussed
later, this plane should not be “too close" to either end of the bar. If for purposes of

—&
- % -
BAR IN TENSION ¢
Fig. 2a
BAR IN COMPRESSION P } - ’
-
Fig. 1 Fig. 2b

analysis, the portion of the bar to the right of this plane is considered to be removed,
as in Figure 2b, then it must be replaced by whatever effect it exerts upon the left
portion. By this technique of introducing a cutting plane, the originally internal forces
now become external with respect to the remaining portion of the body. For equilibrium
of the portion to the left this "effect" must be a horizontal force of magnitude P. How-
ever, this force P acting normal to the cross-section a-a is actually the resultant of
distributed forces acting over this cross-section in a direction normal to it.
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DISTRIBUTION OF RESISTING FORCES. At this point it is necessary to make some assumption

regarding the manner of variation of these distributed
forces, and since the applied force P acts through the centroid it is comnonly assumed
that they are uniform across the cross-section. Such a distribution is probably never
realized exactly because of the random orientation of the crystalline grains of which
the bar is composed. The exact value of the force acting on some very small element of
area of the cross-section is a function of the nature and orientation of the crystalline
structure at that point. However, over the entire cross-section the variation is de-
scribed with reasonable engineering accuracy by the assumption of a uniform distribution.

NORMAL STRESS. Instead of speaking of the internal force acting on some small element of

area, it is perhaps of more significance and better for comparative pur-
poses, to treat the normal force acting over a unit area of the cross-section. The in-
tensity of normal force per unit area is termed the normal stress and is expressed in
units of force per unit area, e.g. lb/in?. - The phrase fotal stress is sometimes used to
denote the resultant axial force in pounds. If the forces applied to the ends of the bar
are such that the bar is in tension, then tensile stresses are set up in the bar; if the
bar is in compression we have compressive stresses. It is essential that the line of ac-
tion of the applied end forces pass throughthe centroid of each cross-section of the bar.

TEST SPECIMENS. The axial loading shown in Figure 2a occurs frequently in structural and

' machine design problems. To simulate this loading in the laboratory, a
test specimen is held in the grips of either an electrically driven gear type testing
machine or a hydraulic machine. Both of these machines are commonly used in materials
testing laboratories for applying axial tension.

In an effort to standardize materials testing techniques the American Society for
Testing Materials, commonly abbreviated A.S.T.M., has issued specifications that are in
common use throughout this country. More than a score of different type specimens are
prescribed for various metallic and non-metallic materials for both axial tension and
axial compression tests. For the present only two of these will be mentioned here, one
for metal plates thicker than 3/16 in. and appearing as in Figure 3, the other for metals
over 1.5 in. thick and having the appearance shown in Figure 4. The dimensions shown are
those specified by the A.S.T.M. but the ends of the test specimens may be of any shape
to fit the grips of the testing machine applying the axial load. As may be seen from
these figures, the central portion of the specimen is somewhat smaller than the end re-
gions so that failure will not take place in the gripped portion. The rounded fillets
shown are provided so that no so-called stress concentrations will arise at the transi-
tion between the two lateral dimensions. Ordinarily, a standard gage length in which
elongations are measured is marked by punching two very small holes into the surface of
the bar either 2in. or 8 in. apart as shown, '
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NORMAL STRAIN. Let us suppose that one of these tension specimens has been placed in a

tension-compression testing machine and tensile forces gradually applied
to the ends. The total elongation over the gage length may be measured at any predeter-
mined increments of the axial load by a mechanical strain gage and from these values the
elongation per unit length, which is termed normal strain and denoted by e, may be found
merely by dividing the total elongation A by the gage length L, i.e. e = A/L. The strain
is usually expressed in units of inches per inch and consequently is d1mens1on1ess. The
phrase total strain is sometimes used to denote the elongation in inches.

STRESS-STRAIN CURVE. As the axial load is gradually increased in increments the total

elongation over the gage length is measured at each increment of
load and this is continued until fracture of the specimen takes place. Knowing the orig-
inal cross-sectional area of the test specimen the normal stress, denoted by s, may be
obtained for any value of the axial load merely by the use of the relation

s = £
A ,

where P denotes the axial load in pounds, and A the original cross-sectional area. Hav-
ing numerous pairs of values of normal stress s and normal strain e, the experimental
data obtained may be plotted with these quantities considered as ordinate and abscissa
respectively. This is a stress-strain diagram of the material for this type of loading.
Such a diagram may take many widely different forms, but shown in Figure 5 are several
typical plots for common engineering materials. For a metal suchas low-carbon structural
steel the data will plot approximately as shown in Figure 5a, for a so-called brittle
material such as cast iron the plot appears as in Figure 5b, while for rubber the diagram
of 5¢ is typical.

Fig. 5a Fig. 5b Fig. 5¢

DUCTILE AND BRITTLE MATERIALS. Metallic engineering materials are commonly classed as ei-

ther ductile or brittle materials., A ductile material is
one having a relatively large tensile strain up to the’ point of rupture (for example,
structural steel or aluminum) whereas a brittle material has a relatively small strain
up to this same point. An arbitrary strain of 0.05 in/in is frequently taken as the di-
viding line between these two classes of materials. Cast iron and concrete are examples
of brittle materials.

HOOKE’S LAW. For a material whose stress-strain curve is similar te that shown in Figure

5a, it is evident that the relation between stress and strain is linear for
comparatively small values of strain. This linear relation between elongation and the
axial force causing it (since each of these quantities differs only by a constant from
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the strain or the stress) was first noticed by Sir Robert Hooke in 1678 and bears the
name of Hooke’s Law. To describe this initial linear range of action of the material we
may consequently write

s = Ee¢

where E denotes the slope of the straight-line portion (OP) of the stress-strain curve in
Figure 5a.

MODULUS OF ELASTICITY. The quantity E, i.e. theratioof the unit stress to the unit strain,

is the modulus of elasticity of the material in temsion, or, as it
is often called, Young’s Nodulus. Values of E for various engineering materials are tab-
ulated in handbooks. Since the unit strain ¢ is a pure number (being a ratio of two
lengths) it is evident that E has the same units as does the stress, for example 1lb/inZ2.
For many common engineering materials the modulus of elasticity in compression is very
nearly equal to that found in tension. It is to be carefully noted that the behavior of
materials under load as discussed in this book is restricted (unless otherwise stated) to
this linear region of the stress-strain curve.

MECHANICAL PROPERTIES OF MATERIALS

The stress-strain curve shown inFigure 5amay be used to characterize several strength
characteristics of the material. They are:

PROPORTIONAL LIMIT. The ordinate to the point P is known as the proportional limit, i.e.

the maximum stress that may be developed during a simple tension test
such that the stress is a linear function of strain. For a material having the stress-
strain curve shown in Figure 5b there is no proportional limit.

ELASTIC LIMIT. The ordinate to a point almost coincident with P is known as the elastic

limit, i.e., the maximum stress that may be developed during a simple ten-
sion test such that there is no permanent or residual deformation when the load is en-
tirely removed. For many materials the numerical values of the elastic limit and the
proportional limit are almost identical and the terms are sometimes used synonymously. In
those cases where the distinction between the two values is evident the elastic limit is
almost always greater than the proportional limit.

ELASTIC RANGE. That region of the stress-strain curve extending from the origin to the
proportional limit.

PLASTIC RANGE. That region of the stress-strain curve extending from the proportional
limit to the point of rupture.

YIELD POINT. The ordinate to the point Y at which there is an increase in strain with no

increase in stress is known as the yield point of the material. After load-
ing has progressed to the point ¥, yieldingis said to take place. Some materials exhibit
two points on the stress-strain curve at which there is an increase of strain without an
increase of stress. These are called upper and lower yield points.

ULTIMATE STRENGTH OR TENSILE STRENGTH. The ordinate to the point U, the maximum ordinate
to the curve, is known either as the ultimate
strength or the tensile strength of the material.
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BREAKING STRENGTH. The ordinate to the point B is called the breaking strength of the
material.

MODULUS OF RESILIENCE. The work done on a unit volume of material, as a simple tensile

force is gradually increased from zero to such a value that the
proportional limit of the material is reached, is defined as the modulus of resilience.
This may be calculated as the area under the stress-strain curve from the origin up to
the proportional limit and is represented as the shaded area in Figure 5a. The units of
this quantity are in-1b/in’. Thus, resilience of a material is its ability to absorb
energy in the elastic range.

MODULUS OF TOUGHNESS. The work done on a unit volume of material asa simple tensile force

is gradually increased from zero to the value causing rupture is
defined as the modulus of toughness. This may be calculated as the entire area under the
stress-strain curve from the origin to rupture. Toughness of a material is its ability to
absorb energy in the plastic range of the material.

PERCENTAGE REDUCTION IN AREA. The ratio of the decrease in cross-sectional area from the

original area upon fracture divided by the original area
and multiplied by 100 is termed percentage reduction in area. It is to be noted that when
tensile forces act upon a bar, the cross-sectional area decreases but calculations for
the normal stress are usually made upon the basis of the original area. This is the case
for the curve shown in Figure 5a. As the strains become increasingly larger it is more
important to consider the instantaneous values of the cross-sectional area (which arede-
creasing), and if this is done the true stress-strain curve is obtained. Such a curve has
the appearance shown by the dotted line in Figure 5a.

PERCENTAGE ELONGATION. The ratio of the increase in length (of the gage 1length) after

fracture divided by the initial length, multiplied by 100 is the
percentage elongation. Both the percentage reduction in area and the percentage elonga-
tion are considered to be measures of the ductility of a material.

WORKING STRESS. The above-mentioned strength characteristics may be used to select a so-

called working stress. Throughout this book all working stresses will be
within the elastic range of the material. Frequently such a stress is determined merely
by dividing either the stress at yield or the ultimate stress by a number termed the
safety factor. Selection of the safety factor is based upon the designer’s judgment and
experience. Specific safety factors are sometimes specified in building codes. See Prob-
lems 4, 12, 13.

The non-linear stress-strain curve of a brittle material, shown in Figure 5b, charac-
terizes several other strength measures that cannot be introduced if the stress-strain
curve has a linear region. They are:

YIELD STRENGTH. The ordinate to the stress-strain curve such that the material has a pre-

determined permanent deformation or "set" when the load is removed is
called the yield strength of the material. The permanent set is often taken to be either
0.002 or 0.0035 in. per in. These values are of course arbitrary. In Figure 5b a set ¢ is
denoted on the strain axis and the line 0'Y is drawn parallel to the initial tangent to
the curve. The ordinate to Y represents the yield strength of the material, sometimes
called the proof stress.
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TANGENT MODULUS. The slope of the tangent to the stress-strain curve at the origin of the
plot is known as the tangent modulus of the material.

There are other characteristics of a material that are useful indesign considerations.
They are:

COEFFICIENT OF LINEAR EXPANSION. This is defined as the change of length per unit length

of a straight bar subject toa temperature change of one
degree. The value of this coefficient is independent of the unit of length but does de-
pend upon the temperature scale used. Usually we will consider the Fahrenheit scale, in
which case the coefficient denoted by «¢ is given for steel, for instance, as 6.5 x 10 per
F°. Temperature changes in a structure give rise to internal stresses just as do applied
loads. See Problems 5 and 8.

POISSON’S RATIO. When a bar is subject to a simple tensile loading there is an increase

in length of the bar in the direction of the load, but a decrease in the
lateral dimensions perpendicular to the load. The ratio of the strain in the lateral di-
rection to that in the axial direction is defined as Poisson’s Ratio. It is denoted in
this book by the Greek letter .. For most metals it lies in the range 0.25 to 0.35. See
Problems 16, 17, 18, 19, 20, :

GENERAL FORM OF HOOKE’'S LAW. The simple form of Hooke’s Law has been given for axial ten-

sion when the loading is entirely along one straight line,
i.e. uni-axial. Only the deformation in the direction of the load was considered and it
was given by

In the more general case an element of material is subject to three mutually perpen-
dicular normal stresses s., sy, s;, which are accompanied by the strains e., ¢, ¢ re-
spectively. By superposing the strain components arising from lateral contraction due to
Poisson’'s effect upon the direct strains we obtain the general statement of Hooke's Law:

€ = ]1:,7[5::" nisy + s,)]
€ = —é—[sy - uls, + s,)]
o = Flo - uls,+ 5,)] See Problems 17 and 20.

CLASSIFICATION OF MATERIALS

This entire discussion has been based upon the assumptions that two characteristics
prevail in the material. They are that we have a:

HOMOGENEOUS MATERIAL, one having the same elastic properties (E, n) at all points in the
body, and an

ISOTROPIC MATERIAL, one having the same elastic properties in all directions at any one

point of the body. Not all materials are isotropic. If a material
does not possess any kind of elastic symmetry it is called anisotropic, or sometimes
aeolotropic. Instead of having two independent elastic constants (E, u) as an isotropic
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material does, such a substance has 21 elastic constants. If the material has three mu-
tually perpendicular planes of elastic symmetry it is said to be orthotropic. The number
of independent constants is 9 in this case. This book considers only the analysis of iso-
tropic materials.

SOLVED PROBLEMS

1. Determine the total elongation of an initially straight bar of length L, cross-sectional area A, and
modulus of elasticity E if a tensile load P acts on the ends of the bar.

-1
P e i P

- - ol

H————L,————O-A}-—

The unit stress in the direction of the force P is merely the load divided by the cross-sectional
area, i.e., s = P/A, Also the unit strain € is given by the total elongation A divided bythe original
length, i.e. € = A/L. By definition the modulus of elasticity E is the ratio of s to ¢, i.e.,

= i = P_/A;_ = _P-L—. or A = ..P.£

e - AL Al AE

Note that A has the units of length, perhaps in. or ft.

2. A surveyors’' steel tape 100 ft long bas a cross-section of 0.250 in.“ by 0.03 in. Determine the elonga-
tion when the entire tape is stretched and held taut by a force of 12 1b. The modulus of elastieity is
30-10% 1b/in2,

Elongation A = P (12) (100-12) = 0,0640 in.

AE (0. 250) (0. 03) (30-10°)

3. A steel bar of cross-section 1 in? is acted upon by the forces shown in Figure (a). Determime the total
elongation of the bar. For steel, E = 30:10% 1b/in2.

4 B C D

A B
10,000 1b - 2000 Ihy 9000 1b
: - —— B e
3000 b 10,000 1b 10,000 1b
l-- 2’ 3 —ott—— 4 —— ' Fig. (b)
: Fig. (a)

The entire bar is in equilibrium, hence all portions of it are also. The portion of the bar between
A and B has a resultant force of 10,000 1b acting over every cross-section, hence a free-body diagram _
of this 2 ft length appears as in Pigure (b) sbove. The force at the right end of this segment must be
10,000 1b to maintain equilibrium with the applied force at the left end. The elongation of this por-
tion is given by
p, = PL oo 10,0008 . 4 4089 in.
AE (1) (30-10%) B

The force acting in the segment between B and C is found by considering the algebraic sum of the
forces to the left of a section between B and C. This indicates that a resultant force of 7000 lb acts
to the left, i.e, thesection has a tensile force acting upon it. This same result could of course have
been obtained by considering the algebraic sum of the forces to the right of this section. Consequent-
1y the free-body diagram of the segment BC appears as in Figure (c) below.
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7000(36)

— 0.0084 in.
(1) (30-10")

The elongation of this portion is given by A2

Similarly, the force acting over any cross-section between C and D must be 9000 1b to maintain equi-
librium with the applied load at D. The free-body diagram of the segment CD appears as in Fig. (d).

B. C C D
7000 Ib g 7000 Ib 9000 Ih ~fmemns fre—= 9000 1b
Fig. (¢) Fig. (d)
The elongation of this portion is given by A, = M = 0.0144 in.

3 (1)(30.10%)

The total elongation is consequently A = 0.0080 + 0.0084 + 0.0144 = 0,0308 in.

The Howe truss shown in Fig. (a) supports the single load of 120,000 1b. If the working stress of the
material in tension is taken to be 20,000 1lb/in2?, determine the required cross-sectional area of bars
DE and AC. Find the elongation of bar DE over its 20 ft length. Assume that the limiting value of the
working stress in tension is the only factor to be considered in determining the required area. Take
the modulus of elasticity of the bar to be 30-10¢ 1b/in2,

B D P AB ED

EC E EG
AC
A
120,000 1b 60,000 Ib 120,000 1b
Fig. (a) Fig. (b) Fig. (¢)

This truss is statically determinate both externally and internally, i.e., the reactions at the
supports may be determined by the equations of static equilibrium and also the axial force in each bar
may be found by a simple statics analysis.,

It is first necessary to determine the vertical reactions at A and H. By symmetry these are each
60,000 1b. A free~body diagram of the joint at A appears as in Fig. (b). In Fig. (b) the unknown forces
in the bars have been denoted as AB and AC, the same designations as the hars themselves, and they
have been assumed to be tensile forces. In this manner if they are found to be positive they actually
indicate tension. If they are found to be negative they indicate compression, and the signs thus ob-
tained are in agreement with the usual sign convention designating tensile forces aspositive and com-
pressive forces as negative. Applying the equations of static equilibrium to the above free-body dia-
gram we have '

i

> 60,000+§(AB) =0 or AB

. -75,000 1b

sE %(-75.000) +AC = 0 or AC = 45,000 1b
Likewise, a free-body diagram of the point at E appears as in Fig.(c) above. From statics,
SF, = ED - 120,000 = 0 or ED = 120,000 1lb

The simple consideration of trusses used here assumes all bars are so-called two-force members,
i.e., subject to either axial tension or compression and no other loadings.
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»
.

For axial loading the stress is given by s = P/A, where P is the axial force and A the cross-
sectional area of the bar, ﬂere. the stress is given as 20,000 1b/ in® in each. bar and the areas are
thus given by

120, 600 2 45, 000 2
= * = 6 in and A = 2 = 2.25 in
DE 20, 000 4c 20, 000
PL -

The elongation of a bar under axial tension is given by A = AE . For bar DE we have

(120, 000) (240)

VTR I 0.160 in.
(6)(30-10°)

5. A series of prismatic bars of rectangular .cross-section 2x3 in,isused as a clamping device to secure
the top on a cylindrical tank containing fluid under pressure. The outside wall of the pressure tank
has projecting lugs welded to it and the prismatic bars fit loosely (in the lateral direction) between
adjacent lugs. To secure the clamping effect the bar is purposely machined so that it is too short for
its flanges (A) to fit over the tank cover resting on top of the lugs. At room temperature, it fails
to clear by 0.10 in. The bar (but not the lugs) is then heated so that it can be slipped over the tank
top. After it cools it then exerts a force normal to the tank top.

If the total bearing area at one end of the bar (area in contact
with the tank top) is 6 inz. find the unit pressure each bar exerts 3
on the tank top. Also, find the temperature to which the bar must
be heated in order that it just clears the top of the tank cover. A Tank Cover
The bar is steel, for which & = 6.5-10~5/°F. ‘ :

0.10 = (6.5-106)(36)(AT) from which AT = 426° F.

ac o

The axial force necessary to stretch the bar this same amount 2 36"
is P where

P (386) 4

0.100 = —m—F—— and P = 500,000 lb 3
(6) (30-105) l

2]
The pressure is assumed to be uniformly distributed over the

bearing area between the flange and the tank top. Consequently, the
pressure is

500, 000

> = 83,300 1b/in®

6. Determine the total increase of length of a bar of constant cross-section hanging verticallyand sub-
ject to it own weight as the only load. The bar is initally straight.

The normal stress (tensile) over any horizontal cross-section is

caused by the weight of the material below that section. The elonga- LULLLLLLLLL
tion of the element of thickness dy shown is : ?
(Ayy) dy ‘
dA = =i
AE
dy
where A denotes the cross-sectional area of the bar and 7 its
specific weight (weight/unit volume). Integrating, the total elonga- 1 L
tion of the bar is
v
fﬂ hrydy . Ay L _ (AyDL M
0 AE 2 2AE 24F l 4

where W denotes the total weight of the bar. It is to be noted that
the total elongation produced by the weight of the bar is equal to
that produced by a load of half its weight applied at the end.
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7. A steel wire 1/4 in. in diameter is used for hoisting purposes in building conmstruction. If 500 ft of
the wire are hanging vertically, and a load of 3001b is being lifted at the lower end of the wire,
determine the total elongation of the wire. The specific weight of the steel is 0.283 1b/in5 and E =
30-10° 1b/in?. :

The total elongatibn is caused partially by the applied force of 3001b and partially by the weight
of the wire. The elongation due to the 300 1b load is
Al = EL— = ————(3(:0) (500-12) 1.27 in,
AR et

From Problem 6 the elongation due to the weight of the wire is

" &) 7 (500-12) (0. 283) (500-12)
: " 3 " — — = 0.170 in.
2 2¢5) @7 (30-10%) '

Consequently, the total elongation is A = 1.27 + 0.17 = 1.44 in.

8. A straight aluminum wire 100 ft long is subject to & tensile stress of 10,000 1b/in?. Determine the
total elongation of the wire. What temperature change would produce this same elongation? Teke E = 10-106
1b/in? and @ (the coefficient of linear expansion) = 12.8-107%/F°,

: PL (10, 000) (100-12)
The total elongation is given b A = — = = 1.20 in.
ne £ v AE 10-10°

A rise in temperature of AT would cause this same expansion. Then
1.20 = (12.8-10-6)(100-12)(AT) and AT = 78.2°F.

9, Two prismatic bars are rigidly fastened together and support a vertical load of 10,000 1b as shown.
The upper bar is steel having a specific weight of 0.283 1b/in3, a lengthof 35 ft, and a cross-sectional
area of 10 in?. The lower bar is brass having a specific weight of 0.300 1b/in?, a length of 20 ft
and & cross-sectional area of 8 in?. For steel E = 30.10° 1b/in?, for brass E = 13.10° 1b/in®. De-
termine the maximum stress in each material.

The maximum stress in the brass bar occurs just below the junction at
section B-B. There, the vertical normal stress is caused by the combined
effect of the load of 10,000 1b together with the weight of the entire
brass bar below B-B.

The weight of the brass bar is
W, = (20-12)(8)(0.300) = 576 lb.

The stress at this section is s = -;

= _I_P.iws:_ﬁ = 1320 1b/in?.

The maximum stress in the steel bar occurs at section A-A, the point
of suspension, because there the entire weight of the steel and brass

bars gives rise to normal stress, whereas at any lower section only a 10,000 Ib
portion of the weight of the steel would be effective in causing stress.
The weight of the steel bar is
K = (35-12)(10)(0.283) = 1185 1b.
The stress across section A-A i1s § = P _ 10,000 + 576 + U8 _ ;154 1p/1n2.

A 10
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10. A solid truncated conical bar of circular cross-section tapers uniformly from a diameter d at its

small end to D at the large end. The length of the bar is L. Determine the elongation due to an axial
force P applied at each end. See Fig. (a) 7

The coordinate x describes the distance of a disc-like element of thickness dx from the small end.
The radius of this small element is readily found by similar triangles:

d x ,D~-d

= £, 228,

2 L

The elongation of this disc~like element may be found by applying the formula for extension due to
axial loading, A = PL/AE, For the element, this expression becomes

Pdx
d x D-~d
TC[? + "L—(—z—‘)]zE

dA =

The extension of the entire bar is obtained by summing the elongations of all such elements over
the bar. This is of course done by integrating. If A denotes the elongation of the entire bar,

L L " 4Pdx 4PL
p = ffan - f -
0 nld + {-(D-—d)]zE nhdE

le————— [ ————}
H———z——vdw,c—
— 71 |
Ptj - - / L~

Bl

» P

—.'
s |-

Fig. (a) Prob. 10
Fig. (b) Prob. 11

11. A body having the form of a solid of revolution supports a load P as shown in Fig.(b). The radius of

the upper base of the body is r, and the specific weight of the materiel is 7y 1b/ft>. Determine how
the radius should vary with the altitude in order that the compressive stress at all cross-sections
should be constant. The weight of the solid is not negligible.

Let y be measured from the upper base as shown and let Q denote the weight of that portion of the
body of altitude y. Then dQ represents the increment to Q in the increment of altitude dy. Let r and
(r +dr) denote the radii of the upper and lower surfaces respectively of this horizontal element and
A and (A+dA) the corresponding areas. Considering the normal compressive stresses acting over both
surfaces of this element, we have

P+Q _ P+Q+dQ

= 8 =
1 i+ da constant
from which (1) iA—- = A = —!-

dQ P+Q s

The increment of area between the upper and lower faces of the element is
dA = n(r+drR-nr? = nrdr

The increment of weight is dQ = mnr2y(dy).
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2nr(dr) _
7 r2ydy)

Consequently from (1), -i— . Integrating, 2 logr = (%)y +C,.

Applying the boundary condition that r =r, when y =0, we find C, =2 logr, .

ynrly
P .
Also from the conditions at the upper base, § = 1_t72 Finally, r = ne
o

Two identical steel bars are pin connected and support a load of 100,000 1b as shown in Fig. (a). Find
the required cross-sectional area of the bars so that the normal stress in them is no greater than
30,000 1b/in?. Also, find the vertical displacement of the point B. Take E = 30-10° 1b/in?.

F

B

P =100,0001b 100,000 1b

Fig. (a) Fig, {(b) Fig. (c)

A free-body diagram of the pin at B is shown in Fig. (b), where Fl represents the force (1b) in
each bar.

From statics, ZF;] = 2(‘/-%_)1'1 - 100,000 = 0 or P;_ = 70,700 1b.
70, 700

Hence the required area is A = = 2.35 in?.
30,000

Because our study of strength of materials is restricted to the case of small deformations, the
basic geometry of the structure is essentially unchanged. Thus, we can denote the position of the
deformed bars by the dotted lines shown in Fig. (¢), and the angle DB'Bis very nearly 45°. The elon-
gation of the left bar is represented by DB'and is found from the expression for axial extension
(Problem 1) to be

0.120

DB = £70,700) (120) 0.120 in. Consequently, BB = —="—— = 0.170 in.
(2.35)(30-100) cos 45°

The two steel bars AB and BC are pinned at each end and support the load of 60,000 1b shown inFig.
(a) below, The metal is annealed cast steel, having a yield point of 60,000 1b/in?. Safety factors
of 2 for tensile members and 3.5 for compressive members are adequate. Determine the required cross-
sectional areas of these barsand also the horizontal andvertical components of displacement of point
B. Take E = 30-10% 1b/in2.

A free-body diagram of the joint at B appears as in Fig.(b) below if the unknown forces are as-
sumed to be tensile.

From statics: ZF, = —60,000 — BC sin 30°= 0 or BC = -120,000 1b

~BA ~BC cos 30° = 0O or BA = 104,000 1b

Y



