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First Eart

Linear hyperbolic equations with constant coefficients
and symbolic calculus with several variables,

Introduction

Since Hadamard gave his Yale lectures in 1920 about the hyperbolic
dlfferential equations of second order, many important papers about the
equations of any order have been published by Herglotz, Schauder, Petrowsky,
Bureau, M, Rilesz, afzd Gdrding, They used various but interesting methods
and their results are important but incomplete.

The first part of our lectures is related to the equations with constant
coefficients; it goes beyond Petrowsky's and Gg.rdiag 's results, and it
improves their methods, Hadamard and Bureau used the Green's formula;
by means of a duality it transforms a boundary value problem into the problem
of finding a particular solution with a given singularity; this transformed
problenm is easy and this particular solution is handy and important when the
given problem is very simple; but generally this method is a gifficult one.

Herglotz, Petrowsky and Girding use another duality: that between the inde~

.‘

pendent variables and the derivations, which gives rise to the Fourlier and
L]

| Leplace transformation, More.precisely Herglotz and Petrowsky applied the

‘Heavlside calculus, that is to say the' Laplace transformation to one vari=

able (as a matter of fact to “the ﬁme) and the Fourier -transformation to

the others (as a matter of fact to the space); how shocking in a relativistiv



3

world! It is not astonishing that Ggrding obtained more complete results

by applylng the Laplace transformation at once to all the variables. But

he did not express all the results this transformation gives; for instance:
he uses the director cones | of the convex domains [\ s without studying
these important convex domains A; he defines some operators by means of
the Laplace transformation and the others by means of the Riesz's analytical
prolongation, whereas it is convenient to define and to study these operators
all together by means of the Laplace transformation,

We do not transform any boundary problem; bui by the Laplace transform=
ation Chapter I defines and studies throughout the symbolic calculus of several
variables! this calculus enables us to solve the Cauchy's boundary value problem
for differential equations (and would also enable one to solve equations
containing both derdlvatives and finite differences): see Chap, VII, §h,
nos 107-108=109 and Chap, VIII, no, 113 - v

Chapter II gives in particular a new, general and concise expression

2 2
of the inverse of 9—-2- - 9—2 = e ™ -a--z- and of its powers,
Bx.l 3x2 ox .
Chepter III studies the inverse of any polynomial of %—x-I, seey ?E— o

Chapter 1V, assm;xing that this polynomial is homogeneous, achieves

Herglot«z-Petrowsky's calculation of its elementary solution, ®

[ WY
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CHAPTER I

THE SYMPOLIC CALCULHS:..

§1. Fourier and Laplece transforms

(This whole §1 is classical: see Bochner's books [13] and [14].)

1. Fourier transforms. (See the bibliography: [13], (151, [21], [22],

[23], [25].) Let X and = be two vector spaces of the same finite dimension

~£ over the field of real numbers, Supnose they are dual: there 1s given

‘& bilinear function

A

X e of x € X and n € =,

the values of which are real and which satisfiestif x . ») - =0 for some
xand-a11‘7 g thenx = 0; if x " = O for some 7 and all x, then
7 = 0, (See: Bourbaki, Algebre lineaire.)

The coordinates Xys vV X of x and 7 1 v 7£ of y) are real

numbers and will be so chosen that

x.‘y =x171+¢oo+x£7£o

Let £(x), g(x) be functions with complex values, defined on X; let g( % )
W ( /) ) be funqtio.ns with comlex valuesy defined on =; f(x)g(x) is the
product of f£(x) and g(x); f(xpep(x) = f.i.ff(x-y)g(y)dyl....dy_e is the cang,.

volution of f(x) and g(x). Ve use the norms .

1
JI£ () ”q = [/.i.flf(x)lquiff.. dx g 9forgq=1lorq=2

”f(x)H o S;p. | £(x){.



We then have

(1.1) S EASLERTE I TE ST

It is easy to prove the following:

If “f”1< + o and Hg”l< + oo, then Hi‘*glllf_ ”f”lﬁglll< + 03 and

ir Hflel<<+'+®oo and |lgll, < + 60, then |l fxgll, < HEN, gl , < + o,

Thus, by use of the convolution, the f(x) such that |/ f Il, <+ o constitute
a ring and the f£(x) such that |l £ o < + ® constitute a vector space over
this ring. |

If £(x)1l; <+ oo, then its Fourier transform F [£(x)] is the continu-
ous and bounded function g( ” ), which is given. by the formula [exp. A
2 e A ]:

(1.2) F [£f(x)] = #( 9 ) =-f.}.{.,/f(x) expe (-2 i x . n ) Xy eee dx_& .

Tt can be proved that, Sf l £/, and )l g)l; < + co, then 7 lgxf) = Flel

?‘[i‘], afterwards that If f(x)ﬂ2 = ”;5(7 W 2-if ¥ = 7 [f]: this enables

one to define Z [f] whénever Il £ Hly < + o+ Plancherel proved the following
regarding this extension:

7 [£] is an isometric linear mapping of the Hilbert space of all func-

tions f(x) such that flf//z < + ® onto the Hilbert space of all functions

g( ) ) such that ] ﬁﬁp)yf + 00 (thus it is a unitary mapping.) This mapping
- 2 ° - T ="
is given by (1.2) whenever both ) £ ¥, and I} fllz < + o0 3 its inverse is

given by

: -1 . '
(13) F~ [0 )] = £(x) = [eaofB( ) expe(27ix 09 ) dy g eea dy

e

whenever both || § ”1 and |) ¢ flo < + e
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We have also the follbwing formulas:
() Flg * £1 = Tl F[£] if ligily < + co and H£ll] or |lf||2 < + 003
likewise‘
(1.5) Flef] = Flel » Fl£] if lgll, and |Ifll, < + oo;
further, if F[f] = 4, then: |
(1.6)  F[£(5x)] = A(X g)ldets T | (dets I = deterninant of X )
for any couple S, 2. of contragredient linear mappings of X and = (that

is to say: x-r;=Sx'Zx7foranyxeXandr)e =)

——

(1.7) Flelx + ¥)] = #(y) exp, (2Wiy + ) for any y € X;
(1.8)  FIf(x) exps (2Tix + &)] = f(y = ) for any § & =;
(1.9) Tlat)] = 7 b,

2f '
(1.10) FIFE] = 2Taphey.

Remark 1.1, There is an easy extension of formula (1,5):
(1.11) If Flf(x, x*)] = g!(r}, r,'), where x and x! & X, 1 and r)' « =,
then ¥[f(x, x)] = f._'_..fﬁ(r} - x}‘, r}')dr}i oee dnh .

3_9_1_1525 1.2. The formula (1.10) shows that the Fourier transformation
reduces the solution of a diffgrential equai.;ion with constant coefficients
to division by a polynomial ... if the solution of the differential equatione
has a Fourier transform, which happens rarely; therefore it is necessary
to use the closely related Lapilace tran.si‘orms.

2, Laplace transformations. The Laplace transform of f(x) is the
function of Z = ﬁ*-ir}(ge _'-'i'_‘,x)e =,1i-= J:’i;Zl- Zl"'hh,
ceey Z_’e =§.€,+ir’,£) .
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(2.1) L) = #(Z) = FI(x) expe (- 2Tx « &)
If IE(x) exp. (= 2Tx « )| 1 <+ o for some "g', then

(2.2) X[f] =f.i./ f(X) €XPe ("' ZT!X . C) dxl cee dx‘z,’

X [£] is also defined if Il £(x) exp. (= 2Tx « &) H2 < + oo for sone &
If W A(E + iJ})N o, <.+ oo for some fixed ¢, then f‘l[;é] ‘exists [but
it could depend on 5: see n°4]; if further I g( & + ix}) ”1 < + o, then
(203) X-l[ﬁ] = f:_:_:f A,(g + ir}) eXp- [2Trx . ( é"' il})]dql Y X} df)l.
The formulas of n°1 give the following ones upon application of (2.1):
(24h) Llg * £1 = L[glZ[£] if for some &£, llg(x) exps (= 2Tx + E )
< + 00 and |l £(x) expe (- 2Tx --{ M4 or I £(x) exp. (= 2Tx gf)l\2 <+ 03
(25) Xlgfl = £le] * Ll£], if for some € and ¥ € =,
)l g(x) expe [= 2Tx o« (& = i")]lll,'2 <+ o, || £(x) exps (= 2TTx » g’)ll2 < + 00}

42) * W(Z) meams fooof B2 + g - &' =19 PCF' + gNapy o aglys

(2.6)  XI£(5K)] = A(Z Z )ldete Z ]

for any couple S, Z of contragredient 1inear mappings of X and =3

(2.7)  Xlflx +¥)] = A(Z) expe (2Fy - §) for any y € X3

(2.8) K[£(x) axpe (2Tx + N1 = AL~ g if Z' e = +1 =5 -

(29) Llx, 2] = - 55 %ﬁl
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Remark 2.1. The second part of these lectures will use the extension of
fopmula (2.5) which follows from (1.11):

(2.11) If 25 [f(x,x')] = g, Z '), where x and x* € X, Z and &' e =+ i

then Z5[f(x,x)] = f...fy!(g' &ty " dry 'y seedn? Y

[ -l o
Notes n L studies Z; s using the definitions giyenidnsp 3.

3. The ring of distributions E(/\) and the subring of functions F( A ).

Proposition 3.1. log |} £(x) exp.(=x f )] q is a convex function

of E’ 5 therefore the set on which it is finite is convex.

Proof, Let ¥ and r) be two points of "= ; let 4c and V be two
positive numbers such that 4« + L = i; the classical Holder's inequality
(see [13], ch. III, L -spaces, §5)

G ) feellys “f”% Il g “qu

gives

) £(x) exps(- X o o L -x. )./77)Hq

W l26x) expe(x o E ) lf(x) expe(- %o n )W | ¢

NESRNEPINE S ol IR F1 exp.(-x.rnl”l oy "
lle) expet-x « D I1I* ‘[Hf(x> exou( = x4 1y )T

Definition of A . Besides X and = a convex domain A of = is

givens [A domain is an open and connected set].

Definition of F(/\ ). F(A) is the set of functions f(x) defined
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on X and such that || £(x) exp.(- \:_f o x)H2< + oo for any Zs AR

Remark 3.1. The propos_ition'3.l oroves that, if /\ had not been supposec
convex, then F(/\ ) would not change by replacing A by its convex closure.
' Remark 3+2. This proposition 3.1 proves also that || £(x) expe(= x o : ).
is uniformly bounded in A\ (that means: on any compact subset of A\ ).
Lemma 3.1, If £(x) € F(/\) and \Es JAN , then |l£(x) exp.(- X o E )H
< + 0 (it is uniformly bounded in A\ ) )
Proof, ];t is sui‘ficier;t to prove that*” £(x) ]l y is finite for 0 € /\

and f£(x) = O outside the domain X >0 X, > Oy see x_g > 0, Let h(x)

- be the function equal to 1 in this domain and O outside; (3.,1) gives

(£ )P < 1 2(x) expal € () *+ een +x )1, o I B expal- € (x;
oo T X p )]“,2 where & is a positive number, so small that (-~ £ , eee = £ )
[ ro |

' This lerma and the formula (n’ 1) Jl f*g” < Hf \I1 llg Il prove that
«fxch(/}) ﬁfandgeF(A), thus

Proposition 3.2. F( A) is, b_y use _q£ convoltﬁion, a ring.

Now let us use the Sc;xwartz's theorie of distributions [21], which makes
it possible to derive any* function: the derivatives so obtained are functions
or distributions. .

Definition of E( A ). &he functions £(x) € F( /A ) have derivatives
‘of all orders; their convolutions are derivatives of functions of F(A),

since F(/ ) is a ring. Therefore the finite sums of derivatives of elements

of F(/\) constitute a ring E( /A); .(the product to be used in this ring

is the convolution)e In other words: E(A ) is the smallest ring which

conta.ina F(/\ ) and is stable for the derivation,

‘bo  The ring of analytic functions Z[E] and its ideal A. Now we look
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at the space = + 1 =': it is a vector space on the ring of complex numbers-
its points are the points
Qﬂ.g-l-ii) (Z=rea1pa.rtofr:;‘c)=imaginarypartofC),

where. £ € =, g "€ =-. The tube with basis /A 1is the set of *points
C = E" + :1,.7 such that :’; & /\ (Bochner; see [14], che V, § Ly pe &
90)s Let the function a(C” ) be analytic in this tube; we denote *

Jal Z v 1m)llg = ees/lal S + 1) dn g weedn, 1%

//a( ,+i7’")” = Sup- ’a(z"'l'))l

r) € =
The Cauchy'!s formula ,
:s. l 2.‘.7. 2 'n ° L4 |
a-( C ) = y fo . Of . *
‘L .
em ° ° .

Al + Cqemelif))y ve G , + €y ama(if, )] dfy vee 8f
enables us to express a( Z:' ) %y an i‘ntegral on a neighborhood of C ’ wﬁch
proves this: : v Lt |

Lemma bol. If la( Z +4 r )Hq is bounded on any compact subset -
of AW, then | a( ?z + i n )} s has the same property.

The Plancherel's theorem (n°l) has the following consequence [see the
same proposition and a similar proof by [1L], che VI, § 8, p..128].

Proposition L.l. Qf maps F(/\ ) one-gne on the set i (—— & )

? I

of the functions () vihich are analytic in the tube with basis --77- A
2

and are such that || A( E +1in )H2 is uniformly bounded in ;}T—:

Moreover



