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TO MY WIFE



PREFACE

The present volume represents the continuation of a series on Molecular Spectra
and Molecular Structure which I started a number of years ago with a volume on
Diatomic Molegules. It was originally intended to cover in the present book Infrared
and Raman as well as visible and ultraviolet spectra of polyatomic molecules. How-
ever, when & first draft had been completed, it appeared that a division into two
volumes was necessary. The first of these on Infrared and Raman Spectra is
presented herewith. A final volume of the series on Electronic Spectra and Electronic
Structure of Polyatomie Molecules is in preparation.

In writing this book I have constantly kept in mind the needs of both the beginner
in the field and the more advanced student and research worker. For the benefit of
the former I have spared no pains to make the explanations elementary and clear.
Although a limited knowledge of elementary wave mechanics is assumed, difficult
mathematical developments have been avoided wherever possible. When they were
unavoidable they have been given in as straightforward and elementary a manner as
possible and without too much regard for mathematical elegance. In particular no
knowledge of group theory has been assumed. But, even though a knowledge of
group theory is not assumed, many terms such as characters, representations, and
so on, which occur frequently in the literature are explained and usged wherever
necessary.

Throughout it has been one of my main concerns to make the reader visualize
clearly the significance and meaning of resulls of the theory. To ngsist in this purpose
a large number of illustrations has been included, some of which have not betfore
appeared in the literature.

In order to make the book comprehensive and useful for the more advanced
student and the research worker, discussions of many special points have been added
in small type. This material is not necessary for an understanding of the subsequent
text in so far as it is printed in ordinary type. In addition, for the benefit of those
carrying out research work in the field of Infrared and Raman specira or related fields,
a large number of tables has been included in which theoreticul results are summarized
or observed dala are collected. These tables are as nearly up to date as possible
under present conditions. All assignments and analyses have been critically reviewed
and if necessary changed. All data are based on a uniform system of fundamental
constants (see the Appendix) and wherever necessary have been recalculated to fit
this uniform system. In numerous footnotes to these tables inconsistencies in the
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literature have been pointed out or differing data and Interpretations have been
indicated.

Unfortunately no internationally accepted nomenclature exists for the spectra of
poiyatomic molecules, as it does for diatomic molecnles. I have used a nomenclature
as closely similar to that for diatomic molecules as possible.

The very detailed subject index at the end of the book includes also all symbols
and quantum numbers, as well as all chemical compounds discussed in the book.

G. HERZBERG
SASKATOON, SASK.
November, 1944
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INTRODUCTION

General remarks. The study of the spectra of diatomic mclecules leads to pre-
cise information about their rotational, vibrational, and electronic energy levels, and
from these energy levels the internuclear distances, the vibrational frequencies and
force constants, the cnergies of dissociation, and other data concerning the structure
of diatomic molecules may be determined sccurately. (See the writer’s Molecular
Spectra and Molecular Structure I. Diatomic Molecules.!) Similar information
about the structure of polyatomic molecules may be obtained from their spectra.
The present volume deals with the information obtainable from the infrared and
Raman spectra. A further volume is planned to deal with the information. obtain-
able from visible and ultraviolet (electronic) band spectra. In the case of polyatomic
molecules the situation is often greatly complicated by the fact that there are several
internuclear distances, several force constants, several dissociation energies, and so
on, which usually have to be determined simultaneously. To this complication of
the structure corresponds in general a much greater complexity of the spectra of
polyatomic as compared to diatomic molecules. Therefore it will not be practical
to start, as can be done in the case of diatomic molecules, from the empirical regulari-
ties; instead we have first to develop the theory and then use it as a guide in inter-
preting the observed spectra. As in Molscular Spectra I we shall restrict our con-
siderations mainly to the spectra of gases and vapors.

While one of the ultimate aims is to determine accurately all internuclear distances
in polyatomic molecules, an important step forward in a specific case is made if it
is possible to determine qualitatively the shape of the molecule, that is, the arrange-
ment of the atoms (whether or not the molecule is linear, and s¢ on). Frequently,
qualitative {eatures of the spectrum are sufficient to allow oune to draw such conclu-
siong, particularly if the molecule has some symmetry. Quite generally, molecules
of different symmetry have qualitatively different spectra. This is of much greater
importanee for polyatomie molecules than for diatomic molecules since for the former
many more different types of symmetry (point groups) are possible than for the
latter, which display only the homonuclear and heteronuclear varieties. It is there-
fore imperative, before we begin our discussion of the spectra, to study the symmetry
preperties of polyatomic molecules.

Symmetry elements and symmetry operations., By symmetry of a molecule we
mean the symmetry of the configuration of its nuclei or, in other words, of the nuclear
frame. The position and the type of the nucle1 determine this symmetry.

A molecule, just as any other geometrical b weobject, may have one or severa,!
symmetry elements, such as a plane of mefxry WA
symmetry. To each symmetry elem tﬁx(srréspona’s’usy
a coordinate transformatior (reflectighy. . i
of the nuclei indistinguishable fro; ) et ks consider the various
possible symmetry elements in mor - L

' In the future this buok [ace refercace
Spentra T.



2 INTRODUCTION

(1) A plane of symmetry, usually designated by o. By carrying out the corre-
sponding symmetry operation (also called &), reflection ai the plane, the malecule, if
it has a plane of symmetry, is transformed into one that is indistinguishable from
the original one since only equal atoms are exchanged. In brief: by the reflection
the molecule is transformed tnto itself (or goes over into itself). In such a molecule
having a plane of symmetry all atoms except those on the plane occur in pairs—to
every atom on one side of the plane there is an equal atom at the other side in a
corresponding position. As an example consider the (non-linear) molecule XY in
which the two X—Y distances are equal (Fig. 1a). The plane perpendicular to the
plane of the molecule and bisecting the angle YXY ig a plane of symmetry; but also
the plane YXY is a plane of symmetry. The molecule HsO is an example (see
p. 280). A molecuie XY;s may have three planes of symmetry perpendicular to the
plane formed by Y; (see Fig. 1b) and if it is a plane molecule the plane of the mole-
cule is also a plane of symmetry. The BF; molecule is such a case (see p. 298).

(2) A center of symmetry, usually designated by ¢. By carrying out the corre-
sponding symmetry operation (also called 1), reflection at the center (inversion), a
molecule having such a center is transformed into itself. In other words, if a line
is drawn from one atom through the center and continued it will meet an equal atom
at the same distance from the center but on the opposite side (if , y, and 2 are the
coordinates oi the one atom with respect to the center as origin, —z, —y, —z are
the coordinates of the other equal atom). Examples are the molecules X2Y,, X2Y3Zs,
XY:Z; if they have the structures indicated in Fig. 1¢, d, and e. A molecule can
have only one center of symmetry. There may or may not be an atom at the center
of symmetry (see the examples XY3zZ; and X2Y:Z,). All other atoms occur in pairs,

(8) A p-fold aris of symmetry, usually designated by Cp, where p = 1, 2, 3, --.
(C stands for cyclic). By cairving out the corresponding symmetry operation,
rotation by an angle 360°/p aboul the axis, a configuration indistinguishable from the
original one is obtained. The same applies, of course, if this operation is carried
out twice, three times, and so on in succession—that is, if the system is rotated by
n(360/p) degrees wheren = 1,2, 3, .-+ p — 1. These operations are called C,, (Cp)?,
(Cp)3, - -, respectively. If n = p the original configuration is ohtained. Therefore
it follows that to every atom not on the axis there are p — 1 other equal atoms at
the same distance from the axis, in the same plane and equally spaced about the
axis. A one-fold axis, of course, means no symmetry at all. 1If a two-fold axis, Cy,
is present, a rotation of 180° about the axis will transform the molecule into itself.
In the molecule XY, (Fig. 1a) the line bisecting the YXY angle is & two-fold axis. In
the molecule X.Y, (Fig. 1¢) there are three mutually perpendicular two-fold axes.
In the molecule XY;, if it is plane (Fig. 1b), there are three two-fold axes going
through each one of the lines XY. The molecules X,Y3Z; (Fig. 1d) and XY.Z.
(Fig. 1e) each have a two-fold axis perpendicular to the plane of the molecule and
XY32Ze has in addition two two-fold axes in the plune. In the case of a three-fold
azis, Cs, a rotation by 120° transforms the molecule into itself. There must be at least
one set of three equivalent atoms. An example is the molecule XY, (Fig. 1b), even
if X is not in the plane Ys. NHj; represents such a case (see p. 294). The three-fold
axis is of course perpendicular to the plane formed by the three Y atoms and goes
through X. A molecule X;Ys is a further example (see Fig. 1f) if the six Y atorus
are arranged in two groups that are symmetrical about the X—X axis (ethane, C.Hs,
see p. 342). Examples of molecules with four-, five-, and siz-fold axes of symnietlry
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are given in Fig. 1g, h, i. The axes are perpendicular to the plane of the paper.
A rotation by 90° 72°, and 80° respectively, transforms the configurations shown
into themselves. The Ce¢Hs moleoule (see p. 363) represents an actual cass of 2

Fig. 1. IMustrations of symmetry elements in polyatomic molecules.—Planes of symmetry
are indicated by broken lines (long dashes), axes of symmeiry by dot-dash lines.

moleeule having the structure shown in Fig. 1i. In principle, any higher-fold axis
is possible; but in practice such axes are not of great importance exocept for the « -fold
ares (C), also called infinite axes of symmetry. Ina molecule with an «-fold axis
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a rotation of 360°/e0, that is, of an infinitely small angle, and therefore also of any
angle, will transferm the molecular configuration into an indistinguishable one. Such
molecules are the linear molecules in which all atoms lie on one straight line, namely
the c-fold axis. Ifig. 1k gives an example. HON is an actual case (see p. 279).
All diatomie mwolecules have such an o -fold axis.

(4) A p-fold rotation-reflection axis, usually designated by S,. In s molecule
hsving such an axis a rotation by 360°/p abcut the axis followed by a reflection at a
plane perpendicular to the axis will transform the molecule into itself. For example,
the molecule X,Y:Z, (Fig. 1d) has a two-fold rotation-reflection axis (Ss) in the line
X~—X and another one perpendicular to this line in the plane of the molecule. While
a rotation by 180° about one of these axes does not transform the molecule into
itself, a rotation followed by reflection at a plane perpendicular to the axis does. It
is seen, however, that a two-fold rotation-reflection axis is always identical with a
ceater of svmmetry (S = ) since the same pairs of atoms are exchanged in the two
operations. Any moiecule that has a p-fold axis (Cp) as well as a plane of symmetry
ox perpendicular to this axis has of course also a p-fold rotation-reflection axis S,.
But enly when p is odd does the existence of 8, necessarily imply the existence of
Cp as well as 0. For example, the plane molecule XY; in Fig. 1b has the symmetry
element S; as well a8 C; and 0. Similarly the plane molecules XY, X510, and XsYs
in Fig. 1g, h, and i have the symmetry elements Sy, Cy, o1; S5, Cs, o4, and Sg, Cs, o4, re-
spectively. But if in XY, and XY the Y atoms are alternately ahove and below
the plane of the paper they would still have a four- and six-fold rotation-reflection
axis, S and S, respectively, but no longer C4, Cs and ¢}, since neither rotation by
360°/4 = 90° and 360°/86 = 60° respectively nor reflection in the plane of the paper
transforms the molecules into themselves.

(5) The vdentity, here designated by 12 This is a trivial syminetry element which
all molecules have no matter how unsymunetrical they are, The corresponding
symmetry operation is to leave the molecule unchanged. Naturally, then, the “new”
configuration cannot be distinguished from the original one. The reason for the
introduction of this symmetry element is a mathematical one. If it is included one
can say quite generally that if two symmetry operations are carried out in succession
the result is the same as that of one other possible symmetry operstion of the mole-
cule. For example, if in the molecule XY; of Fig. 1b we label the Y atoms by Y,
Yw), and Y, and carry out first a reflection at the plane oay and subsequently
a clockwise rotation about C; the same result is obtained as if we had carried out
only a reflection at o). If we carry out two reflections at (., in succession we obtain
the original configuration: that is, two reflections at the same plane are equivalent
to the identity I. Similarly two successive clockwise rotations about C; are equiva-
lent to one counter-clockwise rotation, while three successive rotations are equivalent
to the identity. These examples may also be written in the form of equations:

ooy XCs =0, (o)l =1  (Co=(Cs), (C3)*=1.
Mathematically & number of elements (of any kind) such that the product of any
two is again one of them is called a group.

All the above symmetry operations leave at least onc point unchanged. In erystals, the opera-
tions of translation and screw motion, which leave no point unchanged, have also to be considered.

2 In the literature it is usually designated by E. However, since E is used to indicate a degenerate
species (see p. 108) and since both the symbola for identity and for a degenecrate species frequently
occur in one and the same tabie (see p. 110f.), we prefer to use I for identity.



