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Abstract

This book mainly introduces some new design methods and ideas about
sliding mode control, which are applied to the differential inclusion systems,
nonlinear systems, discrete systems, chaotic systems and the delta operator sys-
tems, etc. In particular, the effect of input nonlinearity is fully considered in
analyzing and implementing a sliding mode control scheme. Incorporating some
control algorithms, such as H,, control, passive control, adaptive control and ge-
neralized H, control, etc, into sliding mode control extends the application
range.

This book is suitable for professional researchers in the fields of control
science and engineering, industrial automation, electrical automation and me-
chanical engineering, but also can be used as a reference material for relevant
scientific and technical engineers.
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Preface

Sliding mode control is an effective robust control strategy, which has many at-
tractive features such as robustness to parameter variations and insensitivity to
matched disturbances. It is successfully applied to a wide variety of practical engi-
neering systems such as robot manipulators, electrical motors, power systems, aircrafts,
underwater vehicles, spacecrafts, flexible space structures, and automotive engines,
and so on.

The sliding mode control design generally consists of two stages. Firstly, it is to
choose an appropriate sliding surface on which the system has desired properties such
as stability, disturbance rejection capability, and tracking ability. That is, the sliding
mode dynamics has desired performances. Secondly, a discontinuous control law is
designed to force the system state trajectories to the sliding surface in a finite time and
remains in it thereafter. Because of the discontinuity of sliding mode controller, high
frequency oscillations of the state trajectory known as chattering phenomenon are the
major disadvantages to the widespread use of sliding mode control in many practical
control systems.

How to reduce chattering is an important and challenging problem. Many mea-
ningful results have been presented to overcome this drawback, such as, boundary
layer and reaching law approach. In recent years, I have been working on the research
in this field and wanting to write an academic monograph about the current new
progress of sliding mode control.

The content of this book mainly originates from my latest research results. Some
new sliding surface designs and reaching law approaches are proposed to reduce the
chattering. The objective models include differential inclusion systems, nonlinear sys-
tems, discrete systems, chaotic systems, delta operator systems and so on. In practice,
due to physical limitation, there do exist nonlinearities in the control input, input non-
linearities, such as saturation, quantization, backlash, dead-zones, and so on, naturally
originate from actuators in system realization and might cause a serious degradation of
the system performance. Thus the effect of input nonlinearity is also taken into ac-
count. Moreover, when the slope parameters of input nonlinearity are unmeasured,
adaptive sliding mode control algorithm is proposed. Besides these, the book also in-



1 §0 Analysis and Design of Sliding Mode Control Systems

cludes generalized H, sliding mode control, H_ non-fragile observer-based sliding

mode control, non-fragile observer-based sliding mode passive control, sliding mode
tracking control and disturbance observer-based sliding mode control, etc. These de-
sign schemes significantly enrich the sliding mode control theory.

I am indebted to my teachers, colleagues and students for their help in writing
this book. I am grateful to the supports of the National Natural Science Foundation of
China (under grant No.U1404610 and 61473115) and Young Academic Leaders Plan
of Henan University of Science and Technology.

Because of the limitation of my knowledge and research scope, there might be
some mistakes in this book. Criticism and suggestions are welcome.
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1 Introduction: An overview of sliding mode control
1.1 Introduction

Before we introduce sliding mode control, variable structure control should be il-
lustrated. As a kind of design strategy in modern control theory, variable structure con-
trol has many features, such as flexibility and complexity. It is insensitive to the system
variations if parameter variations satisfy certain matching conditions.

In the last decades, variable structure control has been successfully applied to the
practical industrial systems, for example, a rigid spacecraft, underwater ships, mobile

18] But so far, there is no

robots, electric drives, and many other mechanical systems
common definition. The essential property of variable structure control is that the dis-
continuous feedback control switches on one or more manifolds in the state space.
Thus the structure of the feedback system is altered or switched as the state crosses
each discontinuity surface. It is generally believed that the variable structure control
strategy is that the system structure will change according to certain rules in order to
make the system performance satisfy the requirement of desired performance index,
when the state trajectory of system passes through different areas in state space. Sys-
tem structure generally refers to the system model described by a mathematical equa-
tion (group).Variable structure control system is a feedback control with different
structures to make the system achieve an expected dynamic performance on the basis
of certain switching logical changes.

Variable structure control is a comprehensive method in modern control theory,
according to the different structures of variable structure control systems, there are
mainly three kinds of control strategies: Precluding sliding mode variable structure
control, switching supervisory control and sliding mode control.

The main idea about precluding sliding mode variable structure control is that the
system state trajectory can reach the stable area in advance from any initial state by
switching logic of the controller and system performance satisfies the desired index
requirements. Though the controller is to be switched, but it does not produce sliding
mode.
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Switching supervisory control is also called multiple model adaptive control. The
control strategy is to make the structure or parameter of the system still maintain good
performance under the condition of structure or parameters mutation, using multiple
switched system model and combining adaptive control and variable structure control.
This kind of the controller can speed up the convergence speed of response.

This book mainly focuses on sliding mode control, although this subject has al-
ready been treated in many papers, surveys, or books B-131 1t remains the object of
many studies (theoretical or various related applications). Sliding mode control was
first studied intensively in the 1960’s by Russian authors, notably Emel’yanov and
Utkin, although early work was also done by Fliigge-Lotz in the 1950’s. So far, the
research and development of sliding mode control have been greatly accelerated in

both theory and applications. The study objects have been extended to discrete sys-
[16-20] [21-25] [26-30]

[

tems , Stochastic systems

[36-39]

, time delay systems , large-scale sys-

tems '), differential inclusion systems and so on.

1.2 The basic concepts of sliding mode control

We start with a motivating example to illustrate the conceptual framework. Con-
sider the following two-dimensional system:
i=ax+u, a>0
Let x, =x and x, =x,.Then the above equation can be rewritten as
{f“ i (1.1)
X, =ax, +u
where x, and x, are state variables, u is the control input.
We take the controller as
u=—@px (1.2)
where the parameter ¢ ischosenas & or -b, b>0.
Casel If @=b>b, then system (1.1) can be rewritten as

{’." Tht (1.3)

x, = —bx, + ax,

Obviously, the eigenvalues of the system (1.3) are a pair of conjugate complex roots:
the real parts are positive. A sketch of phase locus is shown in Fig. 1.1, so the origin of

phase plane is an unstable focus.
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Fig. 1.1 Phase locus (¢ =0)

Case2 If @=-b,then system (1.1

) is
(1.4)

The eigenvalues of the system (1.4) are real numbers: one positive and one negative.

Similar to Case 1, Fig. 1.2 shows a sketch of phase locus, the origin of phase plane is

an unstable saddle point.

b &

M

NN\
o2
5

ki
e
N

Fig. 1.2 Phase locus (¢ =-b)

From the above discussion, neither of the systems (1.3) and (1.4) is stable, ac-

cording to these two structures. But if the above two feedback control laws are com-

bined with a certain rule, then we will find a wonderful change of the phase trajecto-

ries.

Choose the gain of the controller (1.2) as



<4 - Analysis and Design of Sliding Mode Control Systems

_} b xs>0 (15)
i -b, xs<0 '

where the function s=x, +cx;, ¢>0.

Then the system trajectory will reach the line s=0 from the initial point and
converge to zero, which can be shown in Fig. 1.3. It is worth noting that when xs>0,

the phase locus belongs to Case 1 and when x5 <0, the phase locus is in Case 2. The

line s=0 is a boundary line where the controller switches, called switching line (or
switching manifold, switching surface, sliding surface), the corresponding function s

g T
\Q\ v
N

Fig. 1.3 Phase locus (¢ in (1.5))

is called switching function.

Pox

/)

—

-

5=0

Furthermore, why is the line x, =0 not called switching line? This is that be-
cause the system state passes through this line, the parameter ¢ has switching, but
the symbol of the controller does not change. That is, in fact, the controller can be de-
scribed by

u=—b|x|sgns (1.6)
where the signum function sgn(- ) is defined by
1, 5§50
sgn(s)=<4 0, s=0
-1, s<0

From (1.5) and (1.6), the structure of the controller (1.5) is not changed, so the line
x, =0 1is not called switching line.

The motion on the manifold s=0 is called sliding mode. In the sliding mode,
we have
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§=X, +cx=0=x, = —cx, (1.7)
Substituting x, =—cx, into the first equation of the system (1.1) yields to
X, = —cx,
This equation is called the sliding mode dynamics. Choosing ¢ >0 guarantees the
state x, tends to zero as ¢ tends to infinity, then from (1.7), the state x, tends to

zero as ¢ tends to infinity. The rate of convergence can be controlled by choice of ¢ .

From the above example, the multiple control structures are designed so that the
state trajectory always moves toward an adjacent region with a different controller, and
so the ultimate trajectory will not exist entirely within one system structure. Instead, it
will slide along the boundary of the control structures. So the main idea is that the sys-
tem state trajectory is forced to the preset switching manifold by the controller, and
then reaches the zero along the switching manifold. So this control with a sliding mode
is called sliding mode variable structure control or sliding mode control for short.

1.3 Sliding mode control design

Consider an affine nonlinear system described by
x(t)= f(x,0)+ B(x,t)u(r) (1.8)
where x(f)eR" is the system state, u(#)eR™ is the control input. The functions
f:R"*R—R" and B:R"xRr R”™ are assumed to be continuous and suffi-
ciently smooth.
The switching function is selected as s = s(x,t) eR™.
The control law u =u(x,t) will switch in the switching manifold by

'+ b 2 i ’t 0’
u (x,1) = i {5h) SABIR0 L e 1.9)
u, (x,t) gy (x,t) <0,
where u(x,1) [ulxt) u, (x, ):I and s(x,?) ]:slxt) (,)T,u(xt)
and s, (x,t) are smooth for i=1,---,m
Note that because of the discontinuity of the control law (1.9), the classical theory
of ordinary differential equations is unable to explain the existence and uniqueness of

the solution of differential equation (1.8) with discontinuous right-hand sides. That is,
the solution of the system (1.8) is known to exist and be unique if the control law u is

a Lipschitz function and so continuous according to ordinary differential equation
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theory. Consequently, many researchers begin to look for appropriate mathematical
tools to solve this problem, alternative approaches and construction of solutions can be
found in Filippov’s work and differential inclusion theory. These conclusions are
omitted here and the readers interested in these contents may see [40]-[45].

From Section 1.2, the sliding mode control scheme involves two steps:

(1) A switching manifold (i.e., the sliding surface) s(x,£)=0 is designed such
that the system state trajectory presents desirable behavior when the system state is
confined to this manifold.

(2) A sliding mode control law u=u (x,t) is constructed so that the system state
trajectory reaches and stays on the manifold.

The sliding mode control scheme can be shown in Fig. 1.4.

u=u(x.r)
Xo

s(x.0=0

Fig. 1.4 A schematic diagram of sliding mode controller design

Because sliding mode control law is not continuous, it has the ability to drive state
trajectory to the switching manifold in finite time. Once the state trajectory reaches the
sliding surface, the system takes on the character of the sliding mode, that is, the sys-
tem may be asymptotically stable on this manifold.

1.3.1 Reaching condition

The vital part of sliding mode controller design is to choose a control law u so
that it drives the state trajectory to sliding surface and maintains it on this surface once
it has been reached. For the system (1.8) with m =1, the reaching condition can be
expressed by

lims<0 and lims>0

50" 50"
or
5§ <0 (1.10)
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5>05<0

j §<0,§>0

Fig. 1.5 The reaching condition s5<0

=0

The reaching condition (1.10) can be shown in Fig. 1.5. But this condition is not suffi-
cient to guarantee the system state reaches sliding surface in finite time.
Example 1.1 Consider the pendulum equation as follows:
O +sin@+bO=cu
If we take the state variables as x, =@ and x, =@, then a state model of the pendu-

lum can be obtained as

X, =X,
{_ (1.11)

X, ==sinx, —bx, +cu
where the parameters b,c are positive.

The sliding surface is designed as
s=x,+ax=0, a>0

Thus
§=-sinx, +(a—b)x, +cu

The following control law is
u=%(sinxl+ksgns), k>0 (1.12)
If k>|(a—b)x,| isheld, then
si <[|(a=b)x,| -k ]}s| <0 (1.13)
The reaching condition (1.10) is satisfied.
However, if we take the control law as

Le .
u=z[smx1—(a—b)xz—ks], k>0 (1.14)

then
S =—ks (1.15)
The reaching condition (1.10) is also satisfied.
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Integrating (1.15) from ¢, to ¢, we have

s(t)=s(t,)e™
Thus

}i_g}s(t) = }i_l)gs(to)e'“' =0

That is to say, the system state will asymptotically tend to the sliding surface in
infinite time rather than finite time.
To avoid this problem, the reaching condition (1.10) can be modified as
s>¢g, s5<0
{& <=£, §y>1

or

ss<—¢gls|, €>0 (1.16)

which can guarantee the system state reaches the sliding surface in a finite time.
Next, we give the specific reaching time.

In fact,
2 2
ol a1 dls =‘S\.i|i| (1.17)
2 dt 2 dt dt
From (1.16) and (1.17), we have
|s|-9§<—£‘s| (1.18)
If the system state is not on the sliding surface, then s# 0, thatis |s|#0.
From (1.18), we have
dfs
— < 1.19
it (1.19)
Integrating (1.18) from 0 to ¢, we have
|s(£)] =[5 (0)] < et (1.20)
Let ‘s (T )| =0. The reaching time T is obtained as
0
T<M (1.21)

£
That is to say, if ¢>7,then s(¢)=0.

Obviously, if the control law is selected as (1.12) with k=|(a—b)x,|+¢, then

(1.13) satisfies the modified condition (1.16). Thus finite time reachability can be



