LINUX RAID EIE (&eniR)

Managing

BEHEREB (CIP) HiE

LINUX RAID %&F: / (%) ;AKEHi (Vadala, D.) 2. — HEIMR . — b3 i1
2003.7

45 48 3 . Managing RAID on LINUX

ISBN 7-302-06578-0

1. L. O.3. II.Linux#{ERZ-Fx IV.TP316.89
R R A B 558 CIP 328 (2003) %5 029720 5

AL s RRBUR AR & R R
Bl 01-2003-1929 5

&
4k

RAFEHRA,

+

©2003 by O'Reilly & Associates, Inc.

Reprint of the English Edition, jointly published by O'Reilly & Associates, Inc. and Tsinghua University Press,
2003. Authorized reprint of the original English edition, 2003 O'Reilly & Associates, Inc., the owner of all
rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% & M By O'Reilly & Associates, Inc. # & 2003,

F LW PR A K B4 R 2003, St ¥ Fp R &Y ok RR Ao 4K B AT) Ao 4K B AL ES BT 8 —— O'Reilly
& Associates, Inc. #9447 |

WAL A, A BEHT, KBOEITRSFfe 2B NFAETH X EH,

EBHEMAEREXFHE MBI BIRE, EREERBWHE,

5 &/ LINUXRAIDH (S£EIBR)

et %/ ISBN 7-302-06578-0/TP - 4929

vIEgRiE /BRI

##i%it/ Emma Colby, i

R &1/ kPR A (www.tup.tsinghua.edu.cn)
#oo oAb/ deRtiEEREEMERE (hEGRES 100084)
% B/ BHFEIE

) R/ AL ZREENRIA R A 7]

Sik A/ T8TZXK x 980FZ % 16 F K 16.5Fk
hR &K/ 200347 H¥E—RR 2003 7 A% —kENR]
£l ¥/ 0001-3000

s ffir/ 29.005C ()

O'Reilly & Associates 28] /T 48

O'Reilly & Associates 2y & 5 [-7fE UNIX, X, Internet FnH b JF i & 4
BHREAAESSHAMBRAT, R 2BV RMEE.

MELWH 4 The Whole Internet User's Guide & Catalog (#4129 %5 3 B 5181 %
20440 Br BRS04 952 —) FIGNN (£ B #yInternet|] P FIgg ol Mk) , B E[WebSite
(¥ — /5 PCHI Web RS 285k 4), O'Reilly & Associates — F 2 -F Internet & &
I BRI .

i £ BIER R EW, O'Reilly & Associates £ Fxfa E I EYLE B HIRE —
HABEHRER, 5K2EIFEILEBHRBHL, OReilly & Associates 24 7]
BAGRFRHENL L LR, X#EMHOReilly & Associates L T — M 4E# A& T3
fe R B HH AR 75 £t . O'Reilly & Associates i A I 4aft A LARTHER R 2P R, B0
RTRFEHIHHEAR TR, OReilly & Associates iLHIF L EEMEEREE —— fi14
FRMEXFEOEARER . FRWEER, MHAERSEIE, OReilly & Associates {k §&
f A1 B et S H P A5 . (R4 O'Reilly & Associates B 51 RHLI REK R &, FiLL
O'Reilly & Associates ZiE ity FEFEEMT 2B,

tH higi5 AR

HHELME SEEEARMIRBESTZR A, UK Internet b5 Web FyiE R &, 24
ANER Tl A= Bl IEshF1 A & A G R R T E KRB, Mg 5B EHRARERE
IR 2GR E ST IZ A, HHERS T ERRELE . SRif, %88 A G137 R 3
Bzt IR TR E N AR A B 8 8 A B 7 5 — B iR) 48 | S
BRI A, k¥ HMALS1# T £ E O'Reilly & Associates 2 Rl —#t, fEHHR
YL £% B 12 #1 Open Source F A R AT I A B # R LRGN A ZH B £ 00FME,
LARIER . AENBRAZERAEL, DRk 5EMEE “RE" HiR, iRk
o BLAE R & PR R BB Fd A RIE, & & THXIT LSRR AR, B
PLARIEZE N B 0 8 4 Uil 2] 3%

AHLE A RAELLT LR

o (802.11 WaFH (ENR))

o (#E Internet B kK% (FZENER))
o (JavaHi RFM GEEIRR))

. {Open Sources (FZETRR) Y

o (WWWIERKRLH GLEN))
e (LINUX RAID & (RZEIHR))Y
e (Peer-to-Peer (ZZE[IRR)Y

o Qava LBl ATFM GEENAR))
e {Free As In Freedom (E2E1ER))
o (Unix#RERL (LENAR))

Preface

Linux has come a long way in the last decade. No longer relegated to the world of
hobbyists and developers, Linux is ubiquitous and is quickly taking hold of enter-
prise and high-performance computing. Established corporations such as IBM,
Hewlett-Packard, and Sun Microsystems have embraced Linux. Linux is now used to
produce blockbuster motion pictures, create real-time models of worldwide weather
patterns, and aid in scientific and medical research. Linux is even used on the Inter-
national Space Station.

Linux has accomplished this because of a vast, and seemingly tireless, network of
developers, documenters, and evangelists who share the common mantra that soft-
ware should be reliable, efficient, and secure as well as free. The hard work of these
individuals has propelled Linux into the mainstream. Their focus on technologies
that allow Linux to compete with traditional operating systems certainly accounts for
a large part of the success of Linux.

This book focuses on using one of those technologies: RAID, also known as a
Redundant Array of Inexpensive Disks. As you will find out, RAID allows individu-
als and organizations to get more out of their hardware by increasing the perfor-
mance and reliability of their data. RAID is but one component of what makes Linux
a competitive platform.

Overview of the Book

Here is a brief overview of the contents of this book.

Chapter 1, Introduction, provides a quick overview of RAID on Linux, including its
evolution and future direction. The chapter briefly outlines the RAID levels and iden-
tifies which are available under Linux through hardware or software.

Chapter 2, Planning and Architecture, helps you determine what type of RAID is best
suited for your needs. The chapter focuses on the differences between hardware and
software RAIDs and discusses which is the best choice, depending on your budget

and long- and short-term goals. Also included is a discussion of PC hardware rele-
vant to building a RAID system: disk protocols, buses, hard drives, /0 channels,
cable types and lengths, and cases.

If you decide on a software RAID, then Chapter 3, Getting Started: Building a Soft-
ware RAID, outlines the necessary steps in getting your first array online.

Chapter 4, Software RAID Reference, contains all the command-line references for
the RAID utilities available under Linux. It also covers the RAID kernel parameters
and commands related to array and disk management.

Chapter 5, Hardware RAID, covers RAID controllers for Linux. Chapter 5 also cov-
ers some widely available disk controllers and discusses driver availability, support,
and online array management.

Chapter 6, Filesystems, offers a roundup of the journaling filesystems available for
Linux, including ext3, IBM’s JFS, ReiserFS, and Silicon Graphics’s XFS. The chapter
covers installation and also offers some performance tuning tips.

Chapter 7, Performance, Tuning, and Maintenance, covers a range of topics that
include monitoring RAID devices, tuning hard disks, and booting from software
RAID.

Appendix A, Additional Resources, lists online resources, mailing lists, and addi-
tional reading.

Appendix B, Hardware RAID Controller Vendors, offers information about RAID
vendors.

A Note About Architecture

In the interest of appealing to the widest audience, this book covers i386-based Sys-
tems. Software RAID does work under other architectures, such as SPARC, and 1
encourage you to use them. Support for hardware RAID controllers varies between
architectures, so it’s best to contact vendors and confirm hardware compatibility
before making any purchases.

Kernels

Using RAID on Linux involves reconfiguring and modifying the Linux kernel. In gen-
eral, [prefer to use monolithic kernels instead of modules, whenever possible. While
kernel modules are quite useful for home desktop systems and notebooks, they
aren’t the best choice for servers and production systems. The choice between the
two types of kernel is ultimately up to the user. Many users prefer modules to stati-
cally compiled kernel subsystems.

x | Preface

In order to maintain consistency, [had to settle on specific kernels that are used in
the examples found throughout this book. It’s inevitable that between the time of
this writing and the release of the book, newer kernels will become available. This
should not pose any problem for users working with newer kernels. This book uses
kernels 2.4.18, 2.2.20, and 2.0.39, and focuses specifically on the 2.4 kernel.

LILO

Throughout this book, 1 focus on LILO when discussing boot loaders. I know that
there are many other options available (GRUB, for example), but LILO has worked
reliably with Linux’s RAID capabilities, and some of the newer choices are not quite
compatible yet.

Prompts

There are a number of command output listings throughout this book. The com-
mands in these sections start with a prompt (either $ or #) that indicates whether the
command should be executed by a normal user or whether it should be run as root.

$ less /etc/raidtab

vi /etc/raidtab
For example, in the preceding code, the $ prompt indicates that the first command
can be run as a normal user. By default, any user can view, but not modify, the file
fetc/raidtab. To edit that file, however, you need root access (as the # prompt
denotes).

Conventions Used in This Book

The following typographical conventions are used in this book.

Italic
Used for file and directory names, programs, commands, command-line options,
hostnames, usernames, machine names, email addresses, pathnames, URLs, and
new terms.

Constant width
Used for variables, keywords, values, options, and IDs. Also used in examples to
show the contents of files or the output from commands.

Constant width italic
Used for text that the user is to replace with an actual value.

Preface | xi

W A

[These icons signify a tip, suggestion, or general note.
[
\‘?‘ «
) +
These icons indicate a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

O'Reilly has a web site for this book, where they’ll list examples, errata, and any
plans for future editions. The site also includes a link to a forum where you can dis-
cuss the book with the author and other readers. You can access this site at:

http://www.oreilly.com/catalogimraidlinux/

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

Acknowledgments

Many people helped with the writing of this book, but the greatest credit is owed to
Andy Oram, my editor. It was his early interest in my original proposal that started
this project, and his suggestions, criticism, and raw editorial work turned this text
from a draft into an O’Reilly book. I'm also indebted to many people at O'Reilly, for
all their hard work on the numerous tasks involved in producing a book.

Neil Brown, Nick Moffitt, Jakob Oestergaard, and Levy Vargas reviewed the final
draft for technical errors and provided me with essential feedback. Their insight and
expertise helped make this book stronger. Many others helped review various bits of

xii | Preface

material along the way, including Joel Becker, Martin Bene, Danny Cox, Jim Ford,
Corin Hartland-Swann, Dan Jones, Eyal Lebedinsky, Greg Lehey, Ingo Molnar, and
Benjamin Turner.

Thanks to all the filesystem developers who offered me feedback on Chapter 6:
Stephen C. Tweedie, Seth Mos, Steve Lord, Steve Best, Theodore Ts’o, Vladimir V.
Saveliev, and Hans Reiser. My appreciation also goes out to all the vendors who pro-
vided me with software, equipment, and comments: Thomas Bayens, Chin-Tien
Chu, and Thomas Hall at IBM; Angelina Lu and Deanna Bonds at Adaptec; Craig
Lyons and Daron Keith at Promise; James Evans at LSI Logic; Pete Kisich, Kathleen
Paulus, and Adam Radford at 3ware; Joey Lai at Highpoint Technologies; Mathilde
Kraskovetz at Mandrake; and Harshit Mehta at SuSE.

Thanks to my family and friends, who provided support and countless favors while I
was writing this book, especially Dallas Wisehaupt, Philippe Stephan, Stephen
Fisher, Trevor Noonan, Carolyn Keddy, Erynne Simpson, David Perry, Benjamin
Richards, Matthew Williams, Peter Pacheco, Eric Bronnimann, Al Lenderink, Ben
Feltz, and Erich Bechtel.

I owe special thanks to Craig Newmark, Jim Buckmaster, Jeff Green, and the entire
staff of Craigslist.org for graciously providing me with office space and Internet
access during my many excursions to San Francisco. Their hospitality directly
resulted in the writing of Chapter 2. And finally, thanks especially to Eric Scheide,
who encouraged me to write the original proposal for this book, gave me my first job
as a Unix system administrator, and didn’t argue as I slowly retired Ultrix and Solaris
machines in favor of Linux.

Preface | xiii

Preface

1.

Introduction
RAID Terminology

The RAID Levels: An Overview

RAID on Linux

Hardware Versus Software

Planning and Architecture
Hardware or Software?

The RAID Levels: In Depth

RAID Case Studies: What Should 1 Choose?
Disk Failures

Hardware Considerations

Making Sense of It All

Getting Started: Building a Software RAID
Kernel Configuration

Working with Software RAID

Creating an Array

The Next Step

Software RAID Reference
Kernel Options

md Block Special Files

/proc and Software RAID

raidtools

mdadm

Table of Contents

............................ 1
11
17
28
31
32
56

60
70
81
105

106
109
109
114
129

vii

5. HardwareRAID 145

Choosing a RAID Controller 145
Preparing Controllers and Disks 148
General Configuration Issues 150
Mylex 155
Adaptec 167
Promise Technology 174
3ware Escalade ATA RAID Controller 181

LSI Logic (MegaRAID) 184

6. Filesystems 187
Basic Filesystem Concepts 188
The Linux Virtual Filesystem (VFS) 191
ext2 192
ext3 Extensions for the ext2 Filesystem 197
ReiserkS 201
IBM JFS 207

SGI XFS 210

7. Performance, Tuning, and Maintenance 214
Monitoring RAID Devices 214
Managing Disk Failures 216
Configuring Hard Disk Parameters 221
Performance Testing 227
Booting with Software RAID 227

A. AdditionalResources 233
B. Hardware RAID ControllerVendors 236
Index ... 237

vii | Table of Contents

CHAPTER 1
Introduction

Every system administrator sooner or later realizes that the most elusive foe in sus-
taining reliable system performance is bandwidth. On one hand, network connectiv-
ity provides a crucial connection to the outside world through which your servers
deliver data to users. This type of bandwidth, and its associated issues, is well docu-
mented and well studied by virtually all system and network administrators. It is at
the forefront of modern computing, and the topic most often addressed by both non-
technical managers and the mainstream media. A multitude of software and docu-
mentation has been written to address network and bandwidth issues. Most adminis-
trators, however, don’t realize that similar bandwidth problems exist at the bus level
in each system you manage. Unfortunately, this internal data transfer bottleneck is
more sparsely documented than its network counterpart. Because of its second stage
coverage, many administrators, users, and managers are left with often perplexing
performance issues.

Although we tend to think of computers as entirely electronic, they still rely on mov-
ing parts. Hard drives, for example, contain plates and mechanical arms that are sub-
ject to the constraints of the physical world we inhabit. Introducing moving parts
into a digital computer creates an inherent bottleneck. So even though disk transfer
speeds have risen steadily in the past two decades, disks are still an inherently slow
component in modern computer systems. A high-performance hard disk might be
able to achieve a throughput of around 30 MB per second. But that rate is still more
than a dozen times slower than the speed of a typical motherboard—and the mother-
board isn’t even the fastest part of the computer.

There is a solution to this I/O gap that does not include redefining the laws of phys-
ics. Systems can alleviate it by distributing the controllers’ and buses’ loads across
multiple, identical parts. The trick is doing it in a way that can let the computer deal
seamlessly with the complex arrangement of data as if it were one straightforward
disk. In essence, by increasing the number of moving parts, we can decrease the bot-
tleneck. RAID (Redundant Array of Independent Disks) technology attempts to recon-
cile this gap by implementing this practical, yet simple, method for swift, invisible
data access.

Simply put, RAID is a method by which many independent disks attached to a com-
puter can be made, from the perspective of users and applications, to appear as a sin-
gle disk. This arrangement has several implications.

¢ Performance can be dramatically improved because the bottleneck of using a sin-
gle disk for all I/O is spread across more than one disk.

* Larger storage capacities can be achieved, since you are using multiple disks
instead of a single disk.

* Specific disks can be used to transparently store data that can then be used to
survive a disk failure.

RAID allows systems to perform traditionally slow tasks in parallel, increasing per-
formance. It also hides the complexities of mapping data across multiple hard disks
by adding a layer of indirection between users and hardware.

RAID can be achieved in one of two ways. Software RAID uses the computer’s CPU
to carry out RAID operations. Hardware RAID uses specialized processors, on disk
controllers, to manage the disks. The resulting disk set, colloquially called an array,
can provide various improvements in performance and reliability, depending on its
implementation.

The term RAID was coined at Berkeley in 1988 by David A. Patterson, Garth A. Gib-
son, and Randy H. Katz in their paper, “A Case for Redundant Arrays of Inexpen-
sive Disks (RAID).” This and subsequent articles on RAID have come to be called
the “Berkeley Papers.” People started to change the “I” in RAID from “inexpensive”
to “independent” when they realized, first, that disks were getting so cheap that any-
one could afford whatever they needed, and second, that RAID was solving impor-
tant problems faced by many computing sites, whether or not cost was an issue.
Today, the disk storage playing field has leveled. Large disks have become affordable
for both small companies and consumers. Giant magnetic spindles have been all but
eliminated, making even the largest-drives (in terms of capacity) usable on the desk-
top. Therefore the evolution of the acronym reflects the definition of RAID today:
several independent drives operating in unison. However, the two meanings of the
acronym are often used interchangeably.

RAID began as a response to the gap between I/O and processing power. Patterson,
Gibson, and Katz saw that while there would continue to be exponential growth in
CPU speed and memory capacity, disk performance was achieving only linear
increases and would continue to take this growth curve for the foreseeable future.
The Berkeley Papers sought to attack the 1/O problem by implementing systems that
no longer relied on a Single Large Expensive Disk (SLED), but rather, concatenated
many smaller disks that could be accessed by operating systems and applications as a
single disk.

2 | Chapter1: Introduction

This approach helps to solve many different problems facing many different organi-
zations. For example, some organizations might need to deal with data such as news-
group postings, which are of relatively low importance, but require an extremely
large amount of storage. These organizations will realize that a single hard drive is
grossly inadequate for their storage needs and that manually organizing data is a
futile effort. Other companies might work with small amounts of vitally important
data, in a situation in which downtime or data loss would be catastrophic to their
business. RAID, because of its robust and varying implementations, can scale to
meet the needs of both these types of organizations, and many others.

RAID Terminology

One of the most confusing parts of system administration is its terminology. Misno-
mers often obscure simple topics, making it hard to search for documentation and
even harder to locate relevant software. This has unfortunately been the case with
RAID on Linux, but Linux isn’t specifically to blame. Since RAID began as an open
specification that was quickly adopted and made proprietary by a multitude of value-
added resellers and storage manufacturers, it fell victim to mismarketing. For exam-
ple, arrays are often referred to as metadevices, logical volumes, or volume groups.
All of these terms mean the same thing: a group of drives that behave as one—that
is, a RAID or an array. In the following section, we will introduce various terms used
to describe RAID.

RAID has the ability to survive disk failures and increase overall disk performance.
The RAID levels described in the following section each provide a different combina-
tion of performance and reliability. The levels that yield the most impressive perfor-
mance often sacrifice the ability to survive disk failures and vice versa.

Redundancy

Redundancy is a feature that allows an array to survive a disk failure. Not all RAID
levels support this feature. In fact, although the term RAID is used to describe cer-
tain types of non-redundant arrays, these arrays are not, in fact, RAID because they
do not support any data redundancy.

Despite its redundant capabilities, RAID should never be used as a
replacement for reliable backups. RAID does not protect your data in
the event of a fire, natural disaster, or user error.

RAID Terminology | 3

Mirroring _

Two basic forms of redundancy appear throughout the RAID specification. The first
is accomplished with a process called disk mirroring, shown in Figure 1-1. Mirroring
replicates data onto every disk in the array. Each member disk contains the same
data and has an equal role in the array. In the event of a disk failure, data can be read
from the remaining disks.

Figure 1-1. Disk mirroring writes a copy of all data to each disk.

Improved read performance is a by-product of disk mirroring. When the array is
operating normally, meaning that no disks have failed, data can be read in parallel
from each disk in the mirror. The result is that reads can yield a linear performance
based on the number of disks in the array. A two-disk mirror could yield read speeds
up to two times that of a single disk. However, in practice, you probably won’t see a
read performance increase that’s quite this dramatic. That’s because many other fac-
tors, including filesystem performance and data distribution, also affect throughput.
But you can still expect read performance that’s better than that of a single disk.

Unfortunately, mirroring also means that data must be written twice—once to each
disk in the array. The result is slightly slower write performance, compared to that of
a single disk or nonmirroring array.

Parity

Parity algorithms are the other method of redundancy. When data is written to an
array, recovery information is written onto a separate disk, as shown in Figure 1-2. If
a drive fails, the original data can be reconstructed from the parity information and
the remaining data. You can find more information on how parity redundancy works
in Chapter 2.

Figure 1-2. Parity redundancy is accomplished by storing recovery data on specified drives.

4 | Chapter1: Introduction

Degraded

Degraded describes an array that supports redundancy, but has one or more failed
disks. The array is still operational, but its reliability and, in some cases, its perfor-
mance, is diminished. When an array is in degraded mode, an additional disk failure
usually indicates data loss, although certain types of arrays can withstand multiple
disk failures.

Reconstruction, resynchronization, and recovery

When a failed disk from a degraded array is replaced, a recovery process begins. The
terms reconstruction, resynchronization, recovery, and rebuild are often used inter-
changeably to describe this recovery process. During recovery, data is either copied
verbatim to the new disk (if mirroring was used) or reconstructed using the parity
information provided by the remaining disks (if parity was used). The recovery pro-
cess usually puts an additional strain on system resources. Recovery can be auto-
mated by both hardware and software, provided that enough hardware (disks) is
available to repair an array without user intervention.

Whenever a new redundant array is created, an initial recovery process is performed.
This process ensures that all disks are synchronized. It is part of normal RAID opera-
tions and does not indicate any hardware or software errors.

Striping

Striping is a method by which data is spread across multiple disks (see Figure 1-3). A
fixed amount of data is written to each disk. The first disk in the array is not reused
until an equal amount of data is written to each of the other disks in the array. This
results in improved read and write performance, because data is written to more than
one drive at a time. Some arrays that store data in stripes also support redundancy
through disk parity. RAID-0 defines a striped array without redundancy, resulting in
extremely fast read and write performance, but no method for surviving a disk fail-
ure. Not all types of arrays support striping.

Figure 1-3. Striping improves performance by spreading data across all available disks.

RAID Terminology | 5

Stripe-size versus chunk-size

The stripe-size of an array defines the amount of data written to a group of parallel
disk blocks. Assume you have an array of four disks with a stripe size of 64 KB (a
common default). In this case, 16 KB worth of data is written to each disk (see
Figure 1-4), for a total of 64 KB per stripe. An array’s chunk-size defines the smallest
amount of data per write operation that should be written to each individual disk.
That means a striping array made up of four disks, with a chunk-size of 64 KB, has a
stripe-size of 256 KB, because a minimum of 64 KB is written to each component
disk. Depending on the specific RAID implementation, users may be asked to set a
stripe-size or a chunk-size. For example, most hardware RAID controllers use a
stripe-size, while the Linux kernel uses a chunk-size.

64KBWite Stripe size

16KB Chunk size

16KB | 16K8 %

Bosssisquan

Figure 1-4. Stripe-size defines the size of write operations.

The RAID Levels: An Overview

Patterson, Gibson, and Katz realized that different types of systems would inevitably
have different performance and redundancy requirements. The Berkeley Papers pro-
vided specifications for five levels of RAID, offering various compromises between
performance and data redundancy. After the publication of the Berkeley Papers,
however, the computer industry quickly realized that some of the original levels
failed to provide a good balance between cost and performance, and therefore
weren’t really worth using.

RAID-2 and RAID-3, for example, quickly became useless. RAID-2 implemented a
read/write level error correction code (ECC) that later became a standard firmware
feature on hard drives. This development left RAID-2 without any advantage in
redundancy over other RAID levels. The ECC implementation now required unnec-
essary overhead that hurt performance. RAID-3 required that all disks operate in
lockstep (all disk spindles are synchronized). This added additional design consider-
ations and did not provide any significant advantage over other RAID levels.

RAID has changed a great deal since the Berkeley Papers were written. While some
of the original levels are no longer used, the storage industry quickly made additions

6 | Chapter1: Introduction

