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Preface

This book is intended to provide a reasonably self-contained account of a
major portion of the general theory of rings and modules suitable as a text
for introductory and more advanced graduate courses. We assume the famil-
iarity with rings usually acquired in standard undergraduate algebra courses.
Our general approach is categorical rather than arithmetical. The continuing
theme of the text is the study of the relationship between the one-sided
ideal structure that a ring may possess and the behavior of its categories of
modules.

Following a brief outline of set-theoretic and categorical foundations, the
text begins with the basic definitions and properties of rings, modules and
homomorphisms and ranges through comprehensive treatments of direct
sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson
radical, the hom and tensor functions, Morita equivalence and duality, de-
composition theory of injective and projective modules, and semiperfect and
perfect rings. In this second edition we have included a chapter containing
many of the classical results on artinian rings that have helped to form the
foundation for much of the contemporary research on the representation
theory of artinian rings and finite dimensional algebras. Both to illustrate the
text and to extend it we have included a substantial number of exercises
covering a wide spectrum of difficulty. There are, of course, many important
areas of ring and module theory that the text does not touch upon. For
example, we have made no attempt to cover such subjects as homology, rings
of quotients, or commutative ring theory.

This book has evolved from our lectures and research over the past
several years. We are deeply indebted to many of our students and colleagues
for their ideas and encouragement during its preparation. We extend our
sincere thanks to them and to the several people who have helped with the
preparation of the manuscripts for the first two editions, and/or pointed out
errors in the first. .

Finally, we apologize to the many authors whose works we have used but
not specifically cited. Virtually all of the results in this book have appeared in
some form elsewhere in the literature, and they can be found either in the
books and articles that are listed in our bibliography, or in those listed in the
collective bibliographies of our citations.

Eugene, OR Frank W. Anderson
Iowa City, IA Kent R. Fuller

January 1992
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Preliminaries 1
§0. Preliminaries

In this section is assembled a summary of various bits of notation, termin-
ology, and background information. Of course, we reserve the right to use
variations in our notation and terminology that we believe to be self-
explanatory without the need of any further comment.

A word about categories. We shall deal only with very special concrete
categories and our use of categorical algebra will be really just terminological
—at a very elementary level. Here we provide the basic terminology that we
shall use and a bit more. We emphasize though that our actual use of it will
develop gradually and, we hope, naturally. There is, therefore, no need to try
to master it at the beginning.

0.1. Functions. Usually, but not always, we will write functions “on the
left”. That is, if f is a function from 4 to B, and if a € A, we write f(a) for the
value of f at a. Notation like f: 4 — B denotes a function from A to B. The
elementwise action of a function f: 4 — B is described by

fra—f(a) (ae A).
Thus, if A" = A, the restriction (f | A’) of f to A’ is defined by
(flA):a'—fla) (a'eA)
Given f:A - B, A’ < A, and B’ < B, we write
f(A) = {f(a)|ac A} and f7(B)={acA|f(a)eB}.

For the composite or product of two functionsf: 4 — Band g: B — C we write
g °f, or when no ambiguity is threatened, just gf; thus, g o f: 4 — C is defined
by gof:awg(f(a)) for all ae A. The resulting operation on functions is
associative wherever it is defined. The identity function from A to itself is
denoted by 1,. The set of all functions from A to B is denoted by B* or by
Map(A, B).:
B“ = Map(A,B) = {f|f:A - B}.

So A* is a monoid (= semigroup with identity) under the operation of
composition.

A diagram of sets and functions commutes or is commutative in case travel

around it is independent of path. For example, the first diagram commutes
iff f = hg. If the second is commutative,

LB A4 BSC
h

L

then in particular, travel from A to E is independent of path, whence
jgf = ih.
A function f: A — B is injective (surjective) or is an injection (surjection)

—
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in case it has a left (right) inversef':B — A;thatis,incasef’f = 1, (ff' = 1)
for some f':B — A. So (see (0.2)) f: A — B is injective (surjective) iff it is
one-to-one (onto B). A function f:4 — B is bijective or a bijection in case
it is both injective and surjective; that is, iff there exists a (necessarily unique)
inverse f ':B—>Awithff "' = lzand f " = 1,.

If A < B, then the function i = i _5: A4 — Bdefined byi = (13| 4):a—a
for all ae A4 is called the inclusion map of A in B. Note that if A € B and
A< C,andif B# C,theni,_g#i,.c. Of course 1, =i . ,.

With every pair (0, 1) there is a Kronecker delta; that is, a function
6o, B)+— d,4 on the class of all ordered pairs defined by

P 1 ifa=4
#7010 ifa# B

Whenever we use a Kronecker delta, the context will make clear our choice
of the pair (0, 1).

0.2. The Axiom of Choice. Let A be a set, let ¥ be a collection of non-
empty subsets of B, and let ¢ be a function from A4 to &. Then the Axiom of
Choice states that there is a function g: 4 — B such that

g(a) € o(a) (ae A).

Suppose now that f: B — A4 is onto A; that is, f(B) = A. Then for each ae A4,
there is a non-empty subset o{a) = f "({a}) = B. Applying the Axiom of
Choice to A, the function o:a+ o(a), and the collection % of subsets of B
produces a right inverse g for f, so as claimed in (0.1), f is surjective.

Let ~ be an equivalence relation on a set A. A subset R of A is a (complete)
irredundant set of representatives of the relation ~ in case for each ae 4
there is a unique o(a)e R such that a ~ o(a). The Axiom of Choice
guarantees the existence of such a set of representatives for each equivalence
relation. '

0.3. Cartesian Products. A function ¢: 4 — X will sometimes be called
an indexed set (in X indexed by A) or an A-tuple (in X) and will be written as

G = (xu)ueA

where x, = a(a). If 4 = {1,...,n}, then we also use the standard variation
(X2)eea = (X15---, X,). Let (X, ), 4 be an indexed set of non-empty subsets of a
set X. Then the (cartesian) product of (X, )4 1S -

X X,={0:A-> X|o(@)eX, (xecA)}.

That is, X X, is just the set of all A-tuples (x,),., such that x, € X, (x e A).
By the Axiom of Choice X, X, is non-empty. If 4 = {1,...,n}, then we
allow the notational variation

XX, =X, x...x X,.

Note that if X = X, (« € 4), then the cartesian product XX, is simply X4,
the set of all functions from A to X. For each aeA the a-projection
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7, : X X, » X, is defined via
n, .0+ o(a) (0 e X X,)

In A-tuple notation, m,((xg)sc4) = X,. An easy application of the Axiom of
Choice shows that each n, is surjective. Observe that if ¢ and ¢’ are in this
cartesian product, then ¢ = ¢’ iff n,0 = n,¢' for all « € A. This fact establishes
the uniqueness assertion in the following result. This result, whose easy
proof we omit, is used in making certain definitions coordinatewise.

0.4. Let (X,),c4 be an indexed set of non-empty sets, let Y be a set, and for
each ae€ A, let f,:Y — X,. Then there is a unique f:Y — X, X, such that
n.f = f,for eacha e A.

0.5. Posets and Lattices. A relation < on a set P is a partial order on P
in case it is reflexive (a < a), transitive (a < band b < ¢ = a < ¢), and anti-
symmetric(a < band b < a = a = b). A pair (P, <) consisting of a set and a
partial order on the set is called a partially ordered set or a poset. If the partial
order is a total order (a < b or b < a for every pair q, b), then the poset is a
chain. If (P, <) is a poset and if P’ < P, then (P’, <') is a subposet in case <’
is the restriction of < to P’; of course, this requires that (P', <) be a poset.
Henceforth, we will usually identify a poset (P, <) with its underlying set P.

Let P be a poset and let A < P. An element e€ A is a greatest (least)
element of 4 in case a < e (e < a) for all ae A. Not every subset of a poset
has a greatest or a least element, but clearly if one does exist, it is unique.
{See Example (2) below.) An element b e P is an upper bound (lower bound)
for A in case a < b (b < a) for all ae A. So a greatest (least) element, if it
exists, is an upper (lower) bound for A. If the set of upper bounds of 4 has a
least element, it is called the least upper bound (lub), join, or supremum (sup)
of A4; if the set of lower bounds has a greatest element, it is called the greatest
lower bound (glb), meet, or infimum (inf) of A. A lattice (complete lattice) is a
poset P in which every pair (every subset) of P has both a least upper bound
and a greatest lower bound in P.

Examples. (1) Let X be a set. The power set of X is the set 2(X) of all
subsets of X. Then #(X) is certainly a poset under the partial order of set
inclusion. This poset is a complete lattice for if & is a subset of #(X), then its
join in 2(X) is its union U/ and its meet in 2(X) is its intersection .o/,

{2) Let X be a set and let #(X) be the set of all finite subsets of X. Then
Z(X) is a poset under set inclusion, and it is a lattice for if A, B € #(X), then
A v Band 4 n B are their join and meet. Since these are also join and meet
of 4, B in #(X), it follows that #(X) is a sublattice of #(X). But note that if
X is infinite, #(X) is not complete.

(3) Let X be the closed unit interval on the real line. Then the set #(X)
of all closed intervals in X is certainly a subposet of 2(X). Also the inter-
section (= meet in 2(X)) of any subset of #(X) is again in #(X). The convex
closure of the union of any subset &7 of #(X) is in #(X) and is clearly the
join of o in #(X). So #(X) is a complete lattice. But #(X)is not a sublattice
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of P(X) precisely because the join in #(X) of some pairs of elements of £(X)
is not their join (= union) in Z(X).

(4) Let X be a two-dimensional real vector space and let #(X) be the
set of all subspaces. Then &(X) is a subposet of Z(X), and the intersection
of any subset of #(X) is again in &(X). The join in #(X) of any subset &/
of #(X) is the subspace spanned by the union U/ (not necessarily U.o/
itself). So #(X) is a complete lattice but it is not a sublattice of 2(X).

Let P be a lattice. Then each pair a, b € P has both a join and a meet in P;
let us denote these by a v band a A b, respectively. Then the maps v and A
from P x P to P defined by

(a,b)r»avb and (a,b)—anb

are binary operations on P. It is easy to see that both (P, v) and (P, A) are
commutative semigroups with

ava=a=aAa (aeP).

The lattice is said to be modular in case it satisfies the modularity condition:
Foralla b,ceP

a=bimpliesan (bvc)=bv(aanaoc)

Most lattices we encounter will be modular (but note (3) above). The lattice
is distributive in case it satisfies the stronger property: For all a, b, ce P

antbvey=(@ab)vianc).

Examples (1) and (2) above are distributive, but (4) is not.

0.6. A partially ordered set P is a complete lattice if P has a join (i.e., P
contains a greatest element) and every non-empty subset of P has a meet in P.

Proof. It will suffice to prove that if B < P, then B has a join in P. Let
e € P be the greatest element of P. Then e > x for all x € P. In particular, the
set of upper bounds of B is non-empty, so it has a meet. Clearly this meet
of the upper bounds of B is an upper bound of B and hence the join of B. [J

0.7. Lattice Homomorphisms. Let P and P’ be posets. A map f:P — P’ is
order preserving (order reversing) in case whenever a < b in P, then
f@<f(b) (f(b) <fla))in P. If P and P are lattices, then f is a lattice
homomorphism (lattice antihomomorphism) in case whenever a, b e P,

flavb)y=fla)v fb) (flav b)={f(a)nAfb)
flanb)=f@) A f(b) (flanrb)=f(a)v f(b))

It is easy to see (using @ < b<>a = a A b) that a lattice-homomorphism is
order preserving. The converse, however, is false (try the inclusion map
F(X) - 2(X) in example (3) of (0.5)). A bijective lattice (anti-) homomor-
phism is a lattice (anti-)isomorphism. It is a simple exercise to prove the
following useful test:
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0.8. Let P and P be lattices, and let f:P — P’ be bijective with inverse
f 1P - P.Then fis a lattice isomorphism if and only if both f and f ~* are
order preserving.

0.9. The Maximal Principle. Let P be a poset. An element meP is
maximal (minimal) in P in case xe P and x > m (x < m) implies x = m.
Clearly, a greatest (least) element in P, if it exists, is maximal (minimal) in P;
on the other hand, a poset may have many maximal (minimal) elements and
no greatest (least) element.

A poset P is inductive in case.every subchain of P has an upper bound in
P; that is, for every subset C of P that is totally ordered by the partial
ordering of P, there is an element of P greater than or equal to every
element of C. The Maximal Principle (frequently called Zorn’s Lemma) is
an equivalent form of the Axiom of Choice (see Stoll [63] for the details). It
states:

Every non-empty inductive poset has at least one maximal element.

0.10. Cardinal Numbers. Two sets 4 and B are cardinally equivalent or
have the same cardinal in case there is a bijection from A4 to B (and hence one
from B to A). Since this clearly defines an equivalence relation, the class of all
sets (see (0.11)) can be partitioned into its classes of cardinally equivalent
sets. These classes are the cardinal numbers. The class of a set A4 is denoted by
card A:

card A = {B|there is a bijection A — B}.

Given two sets A and B we write
card A < card B

in case there is an injection from A4 to B (or, equivalently, a surjection from
B to A). Clearly this is independent of the representatives A and B. Given
sets A and B there is always an injection from one to the other. The
Cantor-Schroder-Bernstein Theorem states that

If card A<card B and card B<card A, then card A = card B.

Thus the relation < is a total order on the class of cardinal numbers.

Let N = {1,2,...} be the natural numbers. Its cardinality is often denoted
by cardN =N, A set A is finite if card A < card N. Of course,
card ({1,...,n}) = nand card & = 0. If card A < card N, then A is countable.
If card A > card N, then A4 is infinite.

The operations of cardinal arithmetic are given by

card A + card B = card((A x {1}) U (B x {2}))
card A - card B = card(A x B)
(card A)Yerd® = card(A®)

If A and B are finite sets these operations agree with ordinary addition,
multiplication and exponentiation. Moreover, they satisfy:
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(1) If A is infinite then, card A + card B = max{card A, card B}.
(2) If Ais infinite and B # (J, then

card A - card B = max{card A, card B}.
(3) For all sets A, B, and C,
((Cd"d A)(card B))(mrd C) = (card A)(card B) - (cardC)'

(4) If card B = 2, then (card B)“*** > card A.
It is easy to establish the existence of a bijection between the power set #(A)
and the set of functions from A4 to {1, 2}. Thus card(@(4)) = 2¢"44 > cqrd A.
However, the set of finite subsets of any infinite set 4 has the same cardinality
as A. For further details see Stoll [63].

0.11. Categories. The term “class”, like that of “set”, will be undefined.
Every set is a class, and there is a class containing all sets. Note that if 4 is a
set and € is a class, then an indexed class (A¢)c. ¢ in #(A) has a union and an
intersection in A. Let € be a class for each pair 4, Be €, let morc(A, B) be a
set; write the elements of morc(4, B) as “arrows” f:4 — B for which A4 is
called the domain and B the codomain. Finally, suppose that for each triple
A, B, C € ¢ there is a function

o:morc(B, C) x mor.(4, B) = mor.(A4, C).
We denote the arrow assigned to a pair
g:B-C f:A-B

by the arrow gf: A — C. The system C = (¥, morc, -) consisting of the class
€, the map mor. (A, B)— mor.(A, B), and the rule - is a category in case:
(C.1) Foreverytriple h:C - D,g:B — C,f:A - B,

ho(gof) = (hog)eF.

(C.2) For each A€%, there is a unique 1, e mor.(A, A) such that if
f:A—> Bandg:C — A, then

foly=f and l,og9=g

If C is a category, then the elements of the class € are called the objects of the
category, the “arrows” f: A — B are called the morphisms, the partial map o is
called the composition, and the morphisms 1, are called the identities of the
category. A morphism f: 4 — B in C is called an isomorphism in case there
is a (necessarily unique) morphism f “':B— A in Csuch that f "'of =1,
and fof "' = 1.

For our purpose the most interesting categories are certain “concrete”
categories. Let C = (%, morc, <) be a category. Then C is concrete in case
there is a function u from ¥ to the class of sets such that for each 4, Be %

morc(A, BYy & Map(u(A), u(B)),

1, = lv(A)’
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and such that - is the usual composition of functions. Here an isomorphism
f:A — Bisa bijection f:u(A4) - u(B).

Examples. (1) Let & be the class of all sets; for each 4, Be ¥, let
morg(A, B) = Map(A4, B), and for each 4,B,Ce%, let -:mor(B,C) x
mors(A, B)— morg(4A, C) be the composition of functions. Then § =
(&£, morg, ) is a concrete category where u(A) = A for each A € &. Call S the
category of sets.

(2) Let 9 be the class of all groups, let mor (G, H) be the set of all group
homomorphisms from G to H, and again let - be the usual composition of
functions. Then G = (¥, morg,<) is a concrete category, the category of
groups, where u(G) is the underlying set of G.

(3) The category of V real vector spaces is the category (¥, mor,, =} where
¥ is the class of real vector spaces, mor,(U, V) is the set of linear trans-
formations from U to ¥, and o is the usual composition. This category is
concrete where u(V) is the underlying set of V.

(4) Let 2 be the class of all posets, mor,(P, Q) the set of all monotone
maps (order preserving and order reversing ones), and o the usual com-
position. Then (2, mor,, <) is not a category, for o is not as required—the
composite of two monotone functions need not be monotone.

If C = (¥, mor, ) is a concrete category, then the set u(A) is called the
underlying set of A€ €.

A category D = (2, mor,, o) is a subcategory of C = (%, more, <) pro-
vided 2 < €, mory(4, B) < mor (A, B) for each pair A, Be 9, - in D is the
restriction of o in C. If in addition mor,(4, B) = mor.(A, B) for each
A, Be 9, then D is a full subcategory of C.

It is clear that the class of abelian groups is the class of objects of a full
subcategory of the category of groups, and that this category has a full sub-
category whose objects are the finite abelian groups. It is a common practice
in algebra to identify an object in a category with its underlying set. Thus
for example, we usually identify a group (G, o), consisting of a set G and an
operation o, with its underlying set G. Note, however, that the category of
groups is not a subcategory of the category of sets, quite simply because for
groups (G,°), (H,°)in ¥

mor¢((G,°),(H, <)) < Map(G, H)
and
morg((G, <), (H,°)) & Map((G,°),(H, )).

0.12. Functors. A functor is a thing that can be viewed as a “homo-
morphism of categories”. Let C = (€, mor, ) and D= (2, map,, ©) be two
categories. A pair of functions F = (F', F") is a covariant functor from C
to D in case F' is a function from % to 2, F” is a function from the
morphisms of C to those of D such that for all 4, B, C € ¢ and allf:A- B
and g:B—- CinC,

(F.1) F'(f):F(A) - F(B)in D;
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(F2) F'(gof) = F'(g)° F'(f);

(F.3) F'(1,) = lp g . . N
Thus, a covariant functor sends objects to objects, maps to maps, identities
to identities, and “preserves commuting triangles”:

A—L.B F(4) —L— F(B)
K7 WA
F(C)

A contravariant functor is a pair F = (F’, F") satisfying instead of (F.1) and
(F.2) their duals

(F.1)* F'(f):F'(B) - F'(4)in D;

(F2* F'(gef) = F'(f)=F'(g9);

(F3) F'(L) =l
So a contravariant functor is “arrow reversing”.

Examples. (1) Given a category C = (%, morc, ), there is the identity
Junctor 1. = (I¢, 1¢) from C to C defined by 1.(4) = 4 and 1(f) = f.

(2) Let C = (%, mor., ) be a concrete category. For each A€%, let
F'(A) = u(A) be the underlying set of 4. For each morphism f of C, let
F'(f) = f. Then clearly F = (F', F") is a covariant functor from C to the
category of sets. It is called a forgetful functor (because it “forgets” all the
“structure” on the objects of C). It should be evident there are “partially
forgetful functors” of various kinds—for example, the covariant functor from
the category of real vector spaces to the category of abelian groups that
“forgets” the scalar multiplication.

(3) Let (G, +) be an abelian group. If 4 is a set, then (G4, +) is an
abelian group where for o,7€G% the sum o + te€G* is defined by
(6 + 1):a+> a(a) + 1(a). (Note that (G4, +) is simply the cartesian product
of A copies of G with coordinatewise addition.) Define F'(4) = (G*, +). If
A, B are sets, and if f: 4 — B, then define F"(f):G? —» G4 by

F'(fYo)=a-f (c€GP)

Then F”(f) is a group homomorphism, and F = (F', F”) is a contravariant
functor from the category of non-empty sets to the category of abelian
groups. All kinds of contravariant functors can be built in this way. For
example, if (G, +,0) were a real vector space, then G* can be made into a
vector space with coordinatewise operations, and a contravariant functor
into the real vector spaces results.

Given a functor F = (F’, F"), then rather than bother with all the primes,
we shall usually write F(A4) and F(f) instead of F'(4) and F"(f). The
relatively minor formal objection is that a morphism f of the category may
also be an object of the category whence F'(f) and F”(f) may both make
sense yet be different.

0.13. Natural Transformations. A natural transformation is a thing that
compares two functors between the same categories. Let C and D be categor-
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ies. Let F and G be functors from C to D, say both covariant. Let
N = (N4).4cc be an indexed class of morphisms in D indexed by € such that
for each 4 €€,

N4 € mors (F(A4), G(A)).

Then n is a natural transformation from F to G in case for each pair,
A, Be ¥, and each fe mor.(A, B) the diagram

F(4) =2, F(B)

Ma s

G(4) =2 G(B)
commutes: that is ng o F(f) = G(f)e n,. If each 5, is an isomorphism, then
is called a natural isomorphism. (If both F and G were contravariant, the only
change would be to reverse the arrows F(f) and G(f).) The crucial property
of functors is that “they preserve commuting triangles”; then a natural
transformation # achieves a “translation of commuting triangles”

F(A) ———— G(A4)

W) y‘(ﬂ
Ma

F(gf)| >F(B) G(gf)— G(B)
%a) G(g)

F(C) ———— G(C)

In fact notice that any commutative diagram A in C when operated on
elementwise by F and G produces a pair of commutative diagrams F(A) and
G(4) in D (because F and G are functors). Then a natural transformation
from F to G “translates” commutatively F(A) onto G(A). Because of the
technical clumsiness in defining many interesting functors at this stage, we
shall postpone giving examples until such time as we have an abundance
of functors (see §20).

Some Special Notation

0=1{0,1,2,...}, the non negative integers;
= {1,2, ...}, the positive integers;

{peN|pis prime};

the set of integers;

{0,1,....,n — 1};

Q the set of rational numbers;

R = the set of real numbers;

C = the set of complex numbers;

& = the empty set.

N
N
P
z
V4



Chapter 1

Rings, Modules and Homomorphisms

The subject of our study is ring theory. In this chapter we introduce the
fundamental tools of this study. Section 1 reviews the basic facts about rings,
subrings, ideals, and ring homomorphisms. It also introduces some of the
notation and the examples that will be needed later.

Rings admit a valuable and natural representation theory, analogous to
the permutation representation theory for groups. As we shall see, each ring
admits a vast horde of representations as an endomorphism ring of an
abelian group. Each of these representations is called a module. A substantial
amount of information about a ring can be learned from a study of the
class of modules it admits. Modules actually serve as a generalization of both
vector spaces and abelian groups, and their basic behavior is quite similar
to that of the more special systems. In Sections 2 and 3 we introduce modules
and their homomorphisms. In Section 4 we see that these form various
natural and important categories, and we begin our study of categories of
modules.

§1. Review of Rings and their Homomorphisms

Rings and Subrings

By a ring we shall always mean an associative ring with identity. Formally,
then, a ring is a system (R, +,-,0, 1) consisting of a set R, two binary
operations, addition (+) and multiplication (-), and two elements 0 # 1 of R
such that (R, +, 0) is an abelian group, (R, -, 1) is a monoid (i.e., a semigroup
with identity 1) and multiplication is both left and right distributive over
addition. A ring whose multiplicative structure is commutative is called a
commutative ring. We assume that the reader is versed in the elementary
arithmetic of rings and we shall therefore use that arithmetic without further
mention. We shall also invoke the time-honored convention of identifying a
ring with its underlying set whenever there is no real risk of confusion. Of
course, when we are dealing with more than one ring we may modify our
notation to eliminate ambiguity. Thus, for example, if R and § are two rings,
we may distinguish their identities by such self-explanatory notation as
1z and Ig.

Often in practice, particularly in some areas of analysis, one encounters
“rings without identity”. Nevertheless the severity of our requirement of an
identity is more imaginary than real. Indeed a ring without identity can be
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