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PREFACE

This book analyses problems of the theory of partial differential
equations which have concemed me over the last few decades. It discusses
second-order equations with degeneracy of type and order, equations of
mixed elliptic — hyperbolic type, and second-order systems with non-split
principal parts, for which classical problems generally cease to be correctly
formulated. A separate chapter examines the structural and qualitative
properties of classes of nonlinear equations, encompassing some versions
of equations of the gravitational field, the theory of waves in a liquid of
variable density, etc.

The book has an introductory chapter containing a brief review of the
results and methods of the classical theory of linear partial differential
equations. This chapter is intended to help the reader understand the
complexity and importance of problems which do not satisfy the standard
conditions of their normal solvability. A relatively small pant of the book
caused, to a considerable extent, a rejection of the generalizing conclusions
when discussing the material presented in it. For this reason, the results of
a number of mathematicians — even when occasionally exiremely
interesting — have not been included.

I would be pleased if the book were in some way useful to the reader. I
would like to thank E. G. Evseev, D. V. Izyumova and S. S.
Kharibegashvili for their help in preparing the manuscipt. '

A. V. Bitsadze

Moscow-Thbilisi,
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INTRCDUCTION 1

Chapter 1. INTRODUCTION

8 1. THE CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1. The concept of partial differential equations. Suppase
F(:z:, Y AR ...)is a specified Fdimensional vector, N} 1,
the components of which Fi,...,Fv are functions of the

points x of the domain D of the space E. of the independent

variables x,...,%., n > 1, and the Ndimensional vectors
Pioy=(Py g PE L)
with the nonnegative integral indices iy,..., 1n.:

i =k k=0,...m m>1
F=1
An equation of the form
. *u
F((t,....—.-————,... =0
S oxp... ozl ) a.n

is called a partial differential equation with respect to
the unknown vector u with the components uy,..., um.

Yhen ¥ = N = 1, Eq.(1.1) is a (scalar) equation, and
when ¥ > 1 it is a system of partial differential equations.
The highest order of the derivatives of the required func-
tions which occur in a given equation of system (1.1) is
called the order of this equation. The number of equations
¥ and the number of unknown functions X in system (1.1)
generally may differ. )

The vector w = (wn,...,uw), defined in the domain D,

which has classical or generalized partial differentials
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that occur on the left-hand side of Eq.(1.1), and which
converts®it to an identity, is called the solution of this
equation.

k
——.—0"—_ is linpear,
dxt ... dzy"

If the dependence of F on all
Eq. (1.1} is called a linear equation.

2. Division by type of partial differential equation.
Vithout loss of generality we can assume that the quantities
which occur in Eq. (1.1) are all real. Ve will assume that
F = XN and the order of each of the equations occurring in
(1.1) equals m

Vhen the partial differential functions F,...,Fn are
continuous with respect to all p; il i;=m, the linear

=

parts of the increments of these functions
N

O oF; .
— dpi ., i=1,...N
2 2’011? LIS N,

Sty g1 bt

are the principal parts. It is therefore natural that they
can play a specific role when we examine Eq. (1.1).
Using the square matrices

oF
9Pl

n ll

we shall construct the Nm-th order form with respect to the

real parameters \y,...,\n:

Ky 0) = det 2 ud_pToF‘—-
... fg [T

Mo W

KA ¢ W)}

where the sum is taken over all possible nonnegative
integer—va}ues of the indices 1:,...,1i., satisfying the
condition 2 ij=m,

Bq. (1.2, in which

; o"Mu ; .
Pl =, j=I,...,N,

< Su ] tn’
ary' ... dxy

is called the characteristic form (characteristic deter-
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minant) of Eq.(1.1). In the linear case the coefficients of
this form depend only on the point x, and in the general
case they are also functions of the required solution v and
its derivatives.

Partial differential equations are divided by type
according to the form of (1.2). Ve will first assume that
Eq.(1.1) is linear. [If, for the fixed point z€D , we can

obtain the affine transformation of the variables

A= (o)), i=1, o,

i

as a result of which the form obtained from (1.2) contains
only 1, 0 < I ¢ p, variables pi:, we can then say that Eq.
(1.1 parabolically degenerates at the point x. Assuming
that there 1is no parabolic degeneracy, if the conical
manifold

K@...,1)=0 (1.3)

n

does not have real points apart from )\ = 0,..., A, = O,
Eq.(1.1) is called elliptic at the point x. On this assum-
ption we say that Eq. (1.1) is hyperbolic at the point x, if
a straight linme exists in the space of the variable x.,...,
An, such that if we take it as the coordinate axis in the
new variables p.,..., pn, obtained using the affipe trans-
formation \v,..., An, then, with respect to the coordinates,
which vary along this axis, the transformed equation (1.3)
has exactly Fm real roots (simple or multiple) for any
choice of values of the remaining coordinates.

Ve divide partial differential equations into types in
a similar way in the nonlinear case - according to the
properties of the corresponding characteristic form. Since
the coefficients of this form depend (together with the

point x) on the required solution and on its derivatives, in



4 A. V. BITSADZE

this case classification by type only makes sense for the
soluticn chosen.

Ve will say that Eq.(1.1) is parabolic, elliptic or
hyperbolic in the domain D if, at each point x of this
domain it degenerates parabolically, is elliptic or hyper-
bolic. Vhen EFEq.(1.1)> belongs to different types in the
different parts of the domain D in which it is specified, it
i, said to be a mixed-type equation in this domain.

3. Linear second-order partial differential equations.
Linear second-order partial differential equations can- be

written in the form

"
2

L= 3 4Y(@) ;o 4 3B (@) 4 C(nu=F@). 1.0

S

¥e say that Eq. (1.4) is homogeneous or nonhomogeneous
in the domain D in which it is specified, depending on
wheiher the function F(x) is identically zero or is nonzero
in this domain.

The expression

. o*
h () 5
[N N
is called the principal part of the differemtial operator,
on the left-hand side of Eq. (1.4).

Vhen the coefficients A*Y, B!, C and the right-hand
side F of Eq.(1.4) are scalar functions and the required
solution u(x) is alseo scalar, the characteristic farm (1.2)
is quadratic:

Q0. )= X 4% (2)hp,. 1.5
€, j==t

At points at which the coefficients A*+ all equal zero,
the order of Eq. (1.4) degenerates. At these points a divi-

sion into types obviously makes no sense. If we eliminate
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the degeneracy of the order, then, using the definition
given in Sect.2, Eq.(1.4) will be elliptic, hyperbolic or
parabolic depending on whether the form (1.5) is definite
(positive or negative), alternating or degenerate.

At each point x of the domain in which Eq.(1.4) is
specified, we can use a nonsingular affine transformation of

the real variables \v,...,An

AN=NGpoo b)), f=1,...n,

to reduce the quadratic form (1.5) to the canenical form
U= ok,
=1

where the coefficients a:, 1 = 1,..., n, take the values

1, ~1, 0, whilst the number of negative (positive) coeffi-
cients (the inertia index) and the number of zero coeffi-
cients (the form defect) are affine invariants. In the
elliptic case all a; = 1 or all a; = -1. In the hyperbolic
case one of the coefficients a: equals unity, and all the
remaining ones equal minus one (or vice versa). In the
parabolic case at least one of these coefficients equals
zero.

The Laplace equation

J ():
2 s=2=0, (1.6)
=1 '
the wave equation
n—1
- o' g% 0
ox7 gz 1.7
=1
and the heat conduction equation
n—1
tu  gu
o e, (1.8)

=1

are typical examples of elliptic, hyperbolic and parabolic
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'

equations. .

Bq €1.4), which is elliptic in the domain D, ik called
unifwﬂly elliptic, if the nonzero constants k and k of
thq.sam sign exist, such that

3
=

k, ‘x3<0(>\p--.,1,,)<kl2>\§ a.o

[

i
i

for all points z¢D . The Laplace e§uation €(1.6) is uni-
formly elliptic in any domain of the space E..

Since the characteristic quadratic form <1.5) as 1llu-
strated by the equation

ﬁ’u
,M erﬁ‘ (1.10)

i=2

has the form

Q=12+ Zk, 1.11)

this equation is elliptic in the upper half-gpace x. > 0,
hyperbolic in the lower half-space x» < 0 and parabolically
degenerates at all points of the hyperplame x., = 0. In the
domain D, which lies in the upper half-space x. > 0 and is
adjacent to the hyperplane x. = 0, Eq.(1.10) is not uni-
formly elliptic because the coefficient of )\ on the right-
hand side of (l.ii) approaches zero as x» » 0 and therefare
it is impossible to select nonzero constants k., and k& of
the same sign, such that condition (1.9) holds for all the
points of the domain D. Example (1.10) relates to mixed-
type equations in any domain D of the space K., whose
intersection with the hyperplame x. = 0 is not empty.

In the case of the two independent variables x and x
we chall write Eq.(1.4) and the quadratic form (1.5) in
expanded form:



