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Introduction

This monograph is based on ten lectures given by the second author at the
CBMS sponsored conference Hodge Theory, Complex Geometric and Representation
Theory that was held during June, 2012 at Texas Christian University, and on
selected developments that have occured since then in the general areas covered by
those lectures. The original material covered in the lectures and in the appendices
is largely on joint work by the three authors.

This work roughly separates into two parts. One is the lectures themselves,
which appear here largely as they were given at the CBMS conference and which
were circulated at that time. The other part is the appendices to the later lectures.
These cover material that was either related to the lecture, such as selected further
background or proofs of results presented in the lectures, or new topics that are re-
lated to the lecture but have been developed since the conference. We have chosen
to structure this monograph in this way because the lectures give a fairly succinct,
in some places informal, account of the main subject matter. The appendices then
give, in addition to some further developments, further details and proofs of several
of the main results presented in the lectures.

These lectures are centered around the subjects of Hodge theory and represen-
tation theory and their relationship. A unifying theme is the geometry of homoge-
neous complex manifolds.

Finite dimensional representation theory enters in multiple ways, one of which
is the use of Hodge representations to classify the possible realizations of a reduc-
tive, Q-algebraic group as a Mumford-Tate group. The geometry of homogeneous
complex manifolds enters through the study of Mumford-Tate domains and Hodge
domains and their boundaries. It also enters through the cycle and correspondence
spaces associated to Mumford-Tate domains. Running throughout is the analysis of
the Gg-orbit structure of flag varieties and the Gg-orbit structure of the complex-
ifications of symmetric spaces Gg/K where K contains a compact maximal torus.

Infinite dimensional representation theory and the geometry of homogeneous
complex manifolds interact through the realization, due primarily to Schmid, of
the Harish-Chandra modules associated to discrete series representations, especially
their limits, as cohomology groups associated to homogeneous line bundles. It also
enters through the work of Carayol on automorphic cohomology, which involves
the Hodge theory associated to Mumford-Tate domains and to their boundary
components.

Throughout these lectures we have kept the “running examples” of SLo, SU(2,1),
Sp(4) and SO(4,1). Many of the general results whose proofs are not given in the
lectures are easily verified in the running examples. They also serve to illustrate
and make concrete the general theory.



2 INTRODUCTION

We have attempted to keep the lecture notes as accessible as possible. Both
the subjects of Hodge theory and representation theory are highly developed and
extensive areas of mathematics and we are only able to touch on some aspects where
they are related. When more advanced concepts from another area have been used,
such as local cohomology and Grothendieck duality from algebraic geometry at the
end of Lecture 6, we have illustrated them through the running examples in the
hope that at least the flavor of what is being done will come through.

Lectures 1 and 2 are basically elementary, assuming some standard Riemann
surface theory. In this setting we will introduce essentially all of the basic concepts
that appear later. Their purpose is to present up front the main ideas in the theory,
both for reference and to try to give the reader a sense of what is to come. At the
end of Lecture 2 we have given a more extensive summary of the topics that are
covered in the later lectures and in the appendices. The reader may wish to use
this as a more comprehensive introduction. Lecture 3 is essentially self-contatined,
although some terminology from Lie theory and algebraic groups will be used.
Lecture 4 will draw on the structure and representation theory of complex Lie
algebras and their real forms. Lecture 5 will use some of the basic material about
infinite dimensional representation theory and the theory of homogeneous complex
manifolds. In Lectures 6 and 7 we will draw from complex function theory and, in
the last part of Lecture 6, some topics from algebraic geometry. Lectures 8 and 9
will utilize the material that has gone before; they are mainly devoted to specific
computations in the framework that has been established. The final Lecture 10 is
devoted to issues and questions that arise from the earlier lectures.

We refer to the end of Lecture 2 for a more detailed account of the contents of
the lectures and appendices.

As selected general references to the topics covered in this work we mention

e for a general theory of complex manifolds, [Catl], [Ba], [De|, [GH], [Huy]|
and [We|;

e for Hodge theory, in addition to the above references, [Cat2], [ET], [PS], [Vol],
[Vo2];

e for period domains and variations of Hodge structure, in addition to the refer-
ences just listed, [CM-SP], [Cal;

e for Mumford-Tate groups and domains and Hodge representation [Mol], [Mo2],
[GGK1] and [Rol];

e for general references for Lie groups [Kn1] and for representation theory [Kn2J;

specific references for topics covered in Lecture 5 are the expository papers

[Sch2], [Sch3];

e for a general reference for flag varieties and flag domains [FHW]; [GS1] for an
early treatment of some of the material presented below, and [GGK2], [GG1]
and [GG2] for a more extensive discussion of some of the topics covered in this
monograph;

e for a general reference for Penrose transforms [BE] and [EGW]; [GGKZ2],
[GG1] for the material in this work;

e for mixed Hodge structures [PS] and [ET], for limiting mixed Hodge structures
[CKS1], [CKS2|, and [KU], [KP1] and [KP2] for boundary components of
Mumford-Tate domains;

e for the classical theory of Shimura varieties from a Hodge-theoretic perspective
[Ke2].
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LECTURE 1

The Classical Theory: Part I

The first two lectures will be largely elementary and expository. They will
deal with the upper-half-plane H and Riemann sphere P! from the points of view
of Hodge theory, representation theory and complex geometry. The topics to be
covered will be

(i) compact Riemann surfaces of genus one (= 1-dimensional complex tori)
and polarized Hodge structures (PHS) of weight one;

(i) the space I of PHS’s of weight one and its compact dual P* as homoge-
neous complex manifolds;

(iii) the geometry and representation theory associated to X;

(iv) equivalence classes of PHS's of weight one, as parametrized by I'\3{, and
automorphic forms;

(v) the geometric representation theory associated to P!, including the real-
ization of higher cohomology by global, holomorphic data;

(vi) Penrose transforms in genus g =1 and g 2 2.

Assumptions.

e basic knowledge of complex manifolds (in this lecture mainly Riemann
surfaces);

e eclementary topology and manifolds, including de Rham’s theorem;

e some familiarity with classical modular forms will be helpful but not
essential:!

e some familiarity with the basic theory of Lie groups and Lie algebras.

Complex tori of dimension one. We let X = compact, connected complex
manifold of dimension one and genus one. Then X is a complex torus C/A where

A= {TL17I'1 + nng}nl)meZ ccC

1 The classical theory will be covered in the article [Kel] by Matt Kerr in the Contemporary
Mathematics volume, published by the AMS and that is associated to the CBMS conference.
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6 1. THE CLASSICAL THEORY: PART I

is a lattice. The pictures are

— e i ———— —

o1

Here 6; <> m and 8, <> 2 give a basis for Hy (X, Z).
The complex plane C = {z = z + iy} is oriented by

da:/\dyz(%)dz/\dz’>0.

We choose generators my, e for A with 7y A m3 > 0, and then the intersection
number

01 - 09 = +1.
We set Vz = HY(X,Z),V = V2 ® Q = H(X,Q) and denote by

R: Vv -Q
Q(v,v') = —Q(v',v)
the cup-product, which via Poincaré duality H,(X,Q) = H'(X,Q) is the intersec-

tion form.
We have

closed 1-forms v

H! (X,C) = Hll)R(X) = modulo exact

1-forms ¥=d(¢

Al
HY(X,Z)*®C
and it may be shown that
H)p(X) = spang {dz,dz} .
The pairing of cohomology and homology is given by periods

7Ti=/ dz
&

i

and II = (:f) is the period matriz (note the order of the m;’s).
Using the basis for H!(X,C) dual to the basis §;,d, for Hy(X,C), we have

H(X,C) = C? = column vectors
w w

dz = II.

We may scale C by z — Az, and then II = AIl so that the period matrix should be
thought of as point in P! with homogeneous coordinates [:?]. By scaling, we may
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normalize to have m; = 1, so that setting 7 = m, the normalized period matrix is
[1] where Im 7 > 0.

—_———- - — - = =

Differential forms on an n-dimensional complex manifold Y with local holo-
morphic coordinates z1,.. ., 2z, are direct sums of those of type (p, q)
fdzig Ao ANdzg, NdZj, A~ AdE, -

Ve

P

q
Thus the C* forms of degree r on Y are

A"(Y) = pfq;zr APA(Y)

AP (Y)= APa(Y).

Setting
H'"(X) = span{dz}
H%Y(X) = span{dz}
we have

HO%Y(X) = HIO(X).
This says that the above decomposition of the 1-forms on X induces a similar
decomposition in cohomology. This is true in general for a compact Kahler manifold
(Hodge’s theorem) and is the basic starting point for Hodge theory. A recent source
is [Cat1].
From dz A dz = 0 and (%) dz A dz > 0, by using that cup-product is given in
de Rham cohomology by wedge product and integration over X we have

{Q(HLO(X), HY(X)) =0

{Hl(x, C)= HO(X) & HO(X)

iQ(HMW(X), HLO(X)) > 0.

Using the above bases the matrix for @ is
0 -1
o=(1 W)

Q(IT,IT) = QI = 0
iQ(T1,T0) = *TIQTI > 0.

For II = [ 7] the second is just Im7 > 0.

and these relations are
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DEFINITIONS. (i) A Hodge structure of weight one is given by a Q-vector space
V with a line V1'% C V¢ satisfying

VC = Vl,O o) VO,l
yor=yhe,

(i) A polarized Hodge structure of weight one (PHS) is given by the above together
with a non-degenerate form

Q: VeV —=Q, Qv,v") = —Q(v',v)
satisfying the Hodge-Riemann bilinear relations
QVIO, V10) =
{iQ(V”’,Vl‘O) > 0.
In practice we will usually have V = Vz ® Q. The reason for working with Q
will be explained later.

When dim V' = 2, we may always choose a basis so that V = Q? = column
vectors and @ is given by the matrix above. Then V1:? = C is spanned by a point

[1] € PVe 2 P!
Identification. The space of PHS’s of weight one (period domain) is given by

the upper-half-plane

H={r:Im7 > 0}.
The compact dual H given by subvspaceS V10 ¢ V¢ satisfying Q(V10,V10) = 0
(this is automatic in this case) is H = PV & P! where

P! = {7-plane} U oo = lines through the origin in C2.2

It is well known that 3 and P! are homogeneous complex manifolds; i.e., they
are acted on transitively by Lie groups. Here are the relevant groups. Writing

z w
= 0 s w = 0
21 w1

and using @ to identify A%V with Q we have
Q(z,w) ='wQz=zAw
and the relevant groups are
{Aut(VR, Q) = SLy(R)  for H
Aut(Vg, Q) = SLy(C)  for P

In terms of the coordinate 7 the action is the familiar one:
at +c¢
cT+d

where (2 %) € SL,. This is because 7 = 2/2; and
a b 20\ _ [az+bz\ _ ar + b
c d)\z1) \ezo+dz) L\er4d)

2[CM-SP] is a general reference for period domains and their differential geometric proper-
ties. A recent source is [Ca].




1. THE CLASSICAL THEORY: PART I 9

If we choose for our reference point i € H (= [i] € P'), then we have the identifi-
cations

32 SL,(R)/ SO(2)

P!> SL,(C)/B

where (this is a little exercise)

soe={(5 o)+ =1} ={(325 )}
B={(¢ 1) ia-d=-b-c}.

The Lie algebras are (here ¢ = Q,R or C)

s12(9)={(‘; _ba):a,be?}
so(2)={(2 "()“):aeR}
b:{(z :Z):a,bEC}.

REMARK. From a Hodge-theoretic perspective the above identifications of the
period domain H and its compact dual H are the most convenient. From a group-
theoretic perspective, it is frequently more convenient to set

T—1

(==,
and identify 3 with the unit disc A ¢ C C P'. When this is done, SLy(R) becomes
the other real form

SU(1, 1)g = {g - (‘; 3) € SLy(C) : *5Hg =1HI}

Im7 >0« (| <1

1 0
0 -1

Hai<0e€A

wne (7 L)
el 2}

Thus, for the A model SO(2) becomes a “standard” maximal torus and B is a
“standard” Borel subgroup.

We now think of H as the parameter space for the family of PHS’s of weight
one and with dim V = 2. Over H there is the natural Hodge bundle

Vo 5

of SLy(R), where here H = ( ) Then

with fibres

V0.—= y10 = line in V.
Under the inclusion 3 < P!, the Hodge bundle is the restriction of the tautological
line bundle Op: (—1). Both V1.0 and Op:(—1) are examples of homogeneous vector
bundles.
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In general, given
e a homogeneous space
Y =A/B
where A is a Lie group and B C A is a closed subgroup, and
e a linear representation r : B — Aut £ where E is a complex vector space,

there is an associated homogeneous vector bundle

E = AxpFE
l |
Y = A/B

where A x g E is the trivial vector bundle A x E factored by the equivalence relation
(a,e) ~ (ab,r(b~")e)

where a € A, e € E, b € B. The group A acts on E by a-(a’,e) = (ad’, €) and there

is an A-equivariant action on E — Y. There is an evident notion of a morphism of

homogeneous vector bundles; then E — Y is trivial as a homogeneous vector bundle
if, and only if, » : B — Aut(F) is the restriction to B of a representation of A.

EXAMPLE. Let 79 € H C P! be the reference point. For the standard linear
representation of SLy(C) on Vg, the Borel subgroup B is the stability group of the
flag

0) Cc VAo Ve
It follows that there is over P! an exact sequence of SLy(C)-homogeneous vector
bundles
0— O]pl(—l) -V OPJ(I) — 0
where V = P! x V¢ with g € SLy(C) acting on V by g - ([z],v) = ([gz],gv). The
restriction to H of this sequence is an exact sequence of SL;(R)-homogeneous bun-
dles
0— V0 5 v vl 0

The bundle V!0 is given by the representation
cosf) —sinf T/
sinff  cos# ¢
of SO(2). Using the form @ the quotient bundle V/V1? := V%! ig identified with

the dual bundle V1.0,
The canonical line bundle is

wpr = Op1 (—2).

Thus
wa = (V10)82,

Proof. For the Grassmannian Y = Gr(n, E) of n-planes P in a vector space E
there is the standard GL(E)-equivariant isomorphism

TpY = Hom(P, E/P).
In the case above where E = C? and z = [3¢] € P! we have

T.P' =V ® Ve /V}O
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where V' is the line in V¢ corresponding to z. If we use the group SLy(C) that
preserves @ in place of GL3(C), then
VC/V;I'O o~ VZI,O' )
Thus the cotangent space
T*PI o V2.0
where in general we set V0 = (V1.0)®" The above identification wp:1 = Op:1 (—2)
is an SLy(C), but not GL2(C), equivalence of homogenous bundles.

Convention. We set
1/2 _ 1,0
wye” =Vr,

The Hodge bundle V' — H has an SLy(R)-invariant metric, the Hodge metric,
given fibrewise by the 2°4 Hodge-Riemann bilinear relation. The basic invariant of
a metric is its curvature, and we have the following

General fact. Let L — Y be an Hermitian line bundle over a complex mani-
fold Y. Then the Chern (or curvature) form is

1 _
(L) = (5r; ) 00 sl
where s € O(L) is any non-vanishing local holomorphic section and |[|s||? is its length
squared.

Basic calculation.
1 de Ndy @ dr A dr
ar 2 27 (Im7)%

el (VH0) =
This has the following

Consequence. The tangent bundle
TH = Vo2

has a metric a2 )
o dz®+dy* 1 B
dssc = 7 = ((Imr)z) Re(dzdz)

of constant negative Gauss curvature.

Before giving the proof we shall make a couple of observations.
Any SL;(R) invariant Hermitian metric on ¥ is conformally equivalent to daz?+

dy?; hence it is of the form
dz? + dy?
e (F5)

for a positive function h(z,y). Invariance under translation 7 — 7+ b, b € R,
corresponding to the subgroup (} %), implies that h(z,y) = h(y) depends only on

1/2
y. Then invariance under 7 — a7 corresponding to the subgroup ( 0 a_q /,),

a > 0, gives that h(y) = constant. A similar argument gives that c; (V1) is a
constant multiple of the form above.

The all important sign of the curvature K may be determined geometrically
as follows: Let I' C SLy(R) be a discrete group such that Y = T'\H is a compact
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Riemann surface of genus g 2 2 with the metric induced from that on H. By the
Gauss-Bonnet theorem

0>2—2g:X(Y)=4i/KdA=K(M).
T Jy 4

PROOF OF BASIC CALCULATION. We define a section s € T'(3, V1:0) by

s(t) = C) e V1o,

The length squared is given by
lls(r)|1* = i*s(r)Qs(7) = 2y.

Using for 7 =z + iy

0= %(ax - iay)
Oz= %((91 +10y)

we obtain
- 1 [ 2
—00 = —— dx A dy.
27r86 471_((91 + 0y )dz A dy
This gives
1 = 1 dx Ady
— 001 : L — .
5, 00log ||s(T)[|* = 2

REMARK. There is also a SU(2)-invariant metric on Op1 (—1) induced from the
standard metric on C2. For this metric

Is(r)lIZ =1+ |72
(the subscript ¢ on || ||? stands for “compact”). Then we have

1 dxAdy

AV = i R

Thus, V1 — H is a positive line bundle whereas V1.0 — P! is a negative line
bundle with
deg Op1(—1) :/ e1(V10) = —1.
Pl
This sign reversal between the SLy(R)-invariant curvature on the open domain H
and the SU(2) (= compact form of SLy(C))-invariant metric on the compact dual
H = P! will hold in general and is a fundamental phenomenon in Hodge theory.
Above we have holomorphically trivialized V!:* — H using the section

s(r) = C)

We have also noted that we have the isomorphism of SL,(R)-homogeneous line
bundles

wg = V20,
Now w9 has a section d7 and a useful fact is that under this isomorphism

dr = s(1)2



