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EQUILIBRIUM AND NON-EQUILIBRIUM STATISTICAL
THERMODYNAMICS

This book gives a self-contained exposition at graduate level of topics that are
generally considered fundamental in modern equilibrium and non-equilibrium sta-
tistical thermodynamics. ‘

The text follows a balanced approach between the macroscopic (thermody-
namic) and microscopic (statistical) points of view. The first half of the book deals
with equilibrium thermodynamics and statistical mechanics. In addition to stan-
dard subjects, such as, the canonical and grand canonical ensembles and quantum
statistics, the reader will find a detailed account of broken symmetries, critical
phenomena and the renormalization group, as well as an introduction to numer-
ical methods, with a discussion of the main Monte Carlo algorithms illustrated
by numerous problems. The second half of the book is devoted to non-equilibrium
phenomena, first following a macroscopic approach, with hydrodynamics as an im-
portant example. Kinetic theory receives a thorough treatment through the analysis
of the Boltzmann—Lorentz model and of the Boltzmann equation. The book con-
cludes with general non-equilibrium methods such as linear response, projection
method and the Langevin and Fokker-Planck equations, including numerical sim-
ulations. One notable feature of the book is the large number of problems. Simple
applications are given in 71 exercises, while the student will find more elaborate
challenges in 47 problems, some of which may be used as mini-projects.

This advanced textbook will be of interest to graduate students and researchers
in physics.
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Preface

This book attempts to give at a graduate level a self-contained, thorough and ped-
agogic exposition of the topics that, we believe, are most fundamental in modern
statistical thermodynamics. It follows a balanced approach between the macro-
scopic (thermodynamic) and microscopic (statistical) points of view.

The first half of the book covers equilibrium phenomena. We start with a thermo-
dynamic approach in the first chapter, in the spirit of Callen, and we introduce the
concepts of equilibrium statistical mechanics in the second chapter, deriving the
Boltzmann~Gibbs distribution in the canonical and grand canonical ensembles.
Numerous applications are given in the third chapter, in cases where the effects
of quantum statistics can be neglected: ideal and non-ideal classical gases, mag-
netism, equipartition theorem, diatomic molecules and first order phase transitions.
The fourth chapter deals with continuous phase transitions. We give detailed ac-
counts of symmetry breaking, discrete and continuous, of mean field theory and
of the renormalization group and we illustrate the theoretical concepts with many
concrete examples. Chapter 5 is devoted to quantum statistics and to the discus-
sion of many physical examples: Fermi gas, black body radiation, phonons and
Bose-Einstein condensation including gaseous atomic condensates.

Chapter 6 offers an introduction to macroscopic non-equilibrium phenomena.
We carefully define the notion of local equilibrium and the transport coefficients
together with their symmetry properties (Onsager). Hydrodynamics of simple flu-
ids is used as an illustration. Chapter 7 is an introduction to numerical methods, in
which we describe in some detail the main Monte Carlo algorithms. The student
will find interesting challenges in a large number of problems in which numeri-
cal simulations are applied to important classical and quantum models sueh as the
Ising, XY and clock (vector Potts) models, as well as lattice models of superfluid-
ity.

Kinetic theory receives a thorough treatment in Chapter 8 through the analy-
sis of the Boltzmann—Lorentz model and of the Boltzmann equation. The book

XV



Xvi Preface

ends with general non-equilibrium methods such as linear response, the projection
method, the fluctuation-dissipation theorem and the Langevin and Fokker-Planck
equations, including numerical simulations.

We believe that one of this book’s assets is its large number of exercises and
problems. Exercises pose more or less straightforward applications and are meant
to test the student’s understanding of the main text. Problems are more challenging
and some of them, especially those of Chapter 7, may be used by the instructor as
mini-research projects. Solutions of a selection of problems are available on the
web site.

Statistical mechanics is nowadays such a broad field that it is impossible to re-
view in its entirety in a single volume, and we had to omit some subjects to main-
tain the book within reasonable limits or because of lack of competence in spe-
cialized topics. The most serious omissions are probably those of the new meth-
ods using chaos in non-equilibrium phenomena and the statistical mechanics of
spin glasses and related subjects. Fortunately, we can refer the reader to excellent
books: those by Dorfman [33] and Gaspard [47] in the first case and that of Fisher
and Hertz [42] in the second.

The book grew from a translation of a French version by two of us (MLB and
FM), Thermodynamique Statistique, but it differs markedly from the original. The
text has been thoroughly revised and we have added three long chapters: 4 (Critical
phenomena), 7 (Numerical simulations) and 9 (Topics in non-equilibrium statisti-
cal mechanics), as well as a section on the calculation of transport coefficients in
the Boltzmann equation.
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