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PREFACE

THE present book is a revision of the author’s A First
Course in the Differential and Integral Calculus. The
plan of treatment is essentially the same, but the presentation
is fuller, and the lists of exercises have been enlarged by
problems of value to the student of good average ability.

The object of the book is two-fold ; namely, to set forth
the application of the calculus to problems of geometry and
physics of the first order of importance, and to make clear
the thought which underlies the calculus.

To attain the first end, the physical picture must be shown
to the student who has no technical knowledge of physics,
but who can understand the simplest concepts of that science
when clearly presented to him. Consequently, great care
has been taken each time that a new physical notion has been
introduced to say exactly what is meant, and then to show
precisely how mathematics applies to the situation in hand.

On the other hand, thorough training in the formal part of
the calculus is essential if the student is to develop power in
the use of his tools, and exercises adequate for this purpose
have been included in lists properly graded in point of dif-
ficulty.

Behind and beneath it all is the idea of the limit. Ab-
stract discussions of this idea are not in place in an elementary
treatment. The beginner comes to assimilate the method of
limits by seeing it applied, with such details as have a meaning
for him, in proving the few fundamental theorems on which
the calculus rests, and in formulating geometrical and phys-
ical problems.
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vi PREFACE

The treatment is flexible from start to finish. The
teacher can go as far, or stop as early, as he pleases in pre-
senting the material of a given chapter. Thus in the chap-
ter on Definite Integrals any reasonable selection from the
topics there treated can be made, the order changed, and
whole paragraphs omitted without marring the unity of the
course. The same is true of the chapters on Mechanics and
Infinite Series. Many of these abridged treatments are
altogether admirable; but no one of them can be expected
to appear to any large body of teachers as preeminently the
best. It is primarily a question of the personal equation of
the teacher himself. The book also takes account of the
personal equation of the student. A skilful teacher will
help his best students to see as far and as deeply as their
talents permit. He can do this with this text without losing
by the way the less gifted students; for each time that the
scene changes the new subject is presented with the utmost
simplicity.

The book is intended alike for the engineer or the physicist
and for the student of pure mathematics. The best methods
of the present day in the calculus, when properly presented,
are within the reach of the former student and afford him
most valuable tools for the understanding of his own techni-
cal problems. On the other hand, the student of pure mathe-
matics cannot do better than early to inform himself con-
cerning those relations of the calculus to physics, to which
this great branch of mathematics owes its origin.

CAMBRIDGE, MASSACHUSETTS,
September 27, 1922,
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CALCULUS

CHAPTER 1

INTRODUCTION

Tur Calculus was invented in the seventeenth century by
the mathematician, astronomer, and physicist, Sir Isaac Newton
in England, and the philosopher Leibniz in Germany. The
reaction of the invention on geometry and mathematical physics
was most important. In fact, by far the greatest part of the
mathematics and the physics of the present day owes its
existence to this invention.

1. Funotions. The word jfunction, in mathematics, was
first applied to an expression involving one or more letters
which represent variable quantities; as, for example, the
expressions

(a) 3, 288 —3z+15
(b) V,a—f, at — x?%;
2? xy ar+by |
© ’ 2 ’ oy
a+x 2t 4 2 -\/zz+ys+zz
(d) sin z, logz, =~ tanle.

In the second example under (b), two letters enter; but a
is thought of as chosen in advance and then held fast, # alone
being variable. A quantity of this kind is called a constant.
Thus

ax 4 b

is a function of @ which depends on two constants, @ and . .
1



2 CALCULUS

Such expressions are written in symbolic, or abbreviated,
form as f(z), f(z,y) (read: “f of x,” “fof xzand y” ete.);
other letters in common use being F, ¢, ®, ete.* Thus the
equation :

@) f@)=28—3x+1

defines the function f(x) in the present case to be 223 —3z+1.

Again,

@ b Y 2) =2+ 9 +2

is an equation defining the function ¢(z, ¥, 2) as 22 4 y2 4 2%
We shall be concerned for the present with functions of one

single variable, as illustrated by (1) above. Here, = is called

the independent variable, since we assign to it any value we

like. The value of the function, or more briefly, the function,

is called the dependent variable, and is often denoted by a

single letter, as y =1 ()
or y=2x—3z+1.

y==* Graphs. A function
of a single variable,

y=s(=),
can be represented
geometrically by its
graph, and this repre-
sentation is of great aid
in studying the proper-
ties of the function.
The independent vari-
able is laid off as the
a~coordinate, or ab-
scissa, and the depend-
Fio. 1 ent variable, or funec-

* To distinguish between f(z) and F(z), read the first ** small f of z
and the second, *large F of z.”’
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tion, as the y-coordinate, or ordinate. Thus the graph of the
function f@) =2
is the curve

Yy= a8,

Illustrations from Geometry and Physics. The familiar
formulas of geometry and physies afford simple examples of
functions. Thus the area, 4, of a circle is given by the
formula

A ==,
where  denotes the radius, = being the fixed number 3.1416.
Here, r is thought of as the independent variable, —it may
have any positive value whatever,—and A is the function, or
dependent variable.

Again, for the three round bodies, the volumes are :

(@ V= {urs, sphere ;
) V = wr2h, cylinder;
(¢) V= %’ 72k, cone.

In (b) and (c), k denotes the altitude and r, the radius of
the base; V is here a function of the two independent
variables, r and A.

The surfaces of these bodies are given by the formulas:

(@) 8 = 4x12, sphere ;
® ‘ 8 = 27rh, cylinder;
(7) 8 = wrl, cone;

!, in the last formula, denoting the slant height. Thus we
have three further examples of functions of one or of two
variables.

The formula for a freely falling body is

s=}gt%
where s denotes the distance fallen and ¢ the time; ¢ is a
constant, for it has just one value after the units of time and
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length have been chosen. Here, ¢ is the independent variable
and s is the function. If, however, we solve this equation

for¢:
t=\}2—8,
g

then s becomes the independent variable and ¢, the funetion.
i Sometimes two variables are connected by an equation, as

p=c

" where p denotes the pressure of a gas and v its volume, the
temperature remaining constant. Here, either variable can .
be chosen as the independent variable, and when the equation
is solved for the other variable, the latter becomes the de-
pendent variable, or function. Thus, if we write

V= -,

N io

p is the independent variable, and v is expressed as a function
of p. But if we write .
p =

(SR

the rdles are reversed.

The_ Independent Variable Restricted. Often the independent
variable is restricted to a certain interval, as in the case of the
function = NS

y=Va*— 22
Here, # must lie between — a and a:
' —agz<a,

since other values of = make a? — 2? negative, and the above
expression has no meaning.

This was also the case with the geometric examples above
cited. There, r, h, I were necessarily positive, since there is
no such thing, for example, as a sphere of zero or negative
radius.

The independent variable may also be restricted to being a
positive whole number, as in the case of the sum of the first n
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terms of a geometric progression:

s,=a+ar+ ar?+ - + ar~?
Here,
a—ar®
N =

8‘

Suppose a = 1, » = }, the progression thus becoming

1,1 1
) R e B .
a5 22+ +2,.-1
Then
1_21? 1
8"=1___]_:=2—2"-”
2

and we have an example of a function with the independent
variable a natural number, i.e. a positive integer.

In the case of the functions treated in the calculus, the do-
main of the independent variable is a continuum, i.e., for func-
tions of a single variable, an interval, as

aZz<b, or 0<

Ordinarily, the later letters of the alphabet, particularly
x, Y, 2, are used to represent variables, the early letters denot-
ing constants. Thus it will be understood, when such an ex-
pression as P
is written down, that a, b, ¢ are constants and « is the variable.

Multiple-Valued Functions; Principal Value. The expres-
sions above cited are all examples of single-valued functions ;
ie. to each value of the independent variable = corresponds
but one value of the function. A function may, however, be
multiplevalued; as in the case of the function y defined by

the equation
2+ y:=a’
Here -
y=+Va—a?
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and so is a double-valued function. This function is, however,
completely represented by means of the two single-valued
functions,

y=Vai—2* and y=—Var-2=~

Graph of 'y, when Graph of

z'yt|—at y=| vaiz?

They form the branches of this multiple-valued function.

The student should notice that the radical sign +/ is defined
as meaning the positive square root, Nor either the positive or
the negative square root at pleasure. If it is desired to ex-
press the negative square root, the minus sign must be written
in front of the radical sign, —+/. Thus V4 = 2, and not — 2.
This does not mean that 4 has only one square root. It means
that the notation v/4 calls for the positive, and not for the
negative, of these two roots.

S VTZp=2,

and not — 2. For (— 2)?=4, and / means the positive root.
And, generally,

@) { Vat=u, if x is positive;
Va? =—z, if z is negative.

A similar remark applies to the symbol ¥/, which is like-
wise used to mean the positive 2nth root. Moreover,

1
ai=\/6, a®="a.

The functi -
e ction —
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is often called the principal value of the double-valued function
defined by the equation

Y=z

Since multiple-valued functions are studied by means of
single-valued functions, it will be understood henceforth, un-
less the contrary is explicitly stated, that the word function
means single-valued function.

Absolute Value. It is frequently desirable to use merely
the numerical, or absolute value of a quantity, and to have a
notation for the same. The notation is: | z|, read “absolute
value of 2.” Thus

|—3]=3 and |3]|=3.

We can now write in a single formula what was formerly
stated by the two equations (1), namely the definition of the
radical sign,  /:

2 Val=|al.

Again, by the difference of two numbers we often mean the
value of the larger less the smaller. Thus the difference of 4
and 10 is 6; and the difference of 10 and 4 is also 6. The
difference of @ and b, in this sense, can be expressed as either

|6 —al or |a—5].

Continuous Functions. A function, f(z), is said to be con-
tinuous if a slight change in # produces but a slight change in
the value of the function. Thus the polynomials are readily
shown to be continuous; cf. Chap. II, § 5, and all the funec-
tions with which we shall have to deal are continuous, save at
exceptional points.

As an example of a function which is discontinuous at a
certain point may be cited the function (see Fig. 3)

F@) = é



