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Foreword

It is regrettable that a book, once published and on the way to starting a life of
its own, can no longer bear witness to the painful choices that the author had to
face in the course of his writing. There are choices that confront the writer of
every book: who is the intended audience? who is to be proved wrong? who will
be the most likely critic? Most of us have indulged in the idle practice of drafting
tables of contents of books we know will never see the light of day. In some
countries, some such particularly imaginative drafts have actually been sent to
press (though they may not be included among the author’s list of publications).

In mathematics, however, the burden of choice faced by the writer is so heavy
as to turn off all but the most courageous. And of all mathematics, combinatorics
is nowadays perhaps the hardest to write on, despite an eager audience that cuts
across the party lines. Shall an isolated special result be granted a section of its
own? Shall a fledgling new theory with as yet sparse applications be gingerly
thrust in the middle of a chapter? Shall the author yield to one of the contrary
temptations of recreational math at one end, and categorical rigor at the other?
or to the highly rewarding lure of the algorithm?

Richard Stanley has come through these hurdies with flying colors. It has
been said that combinatorics has too many theorems, matched with very few
theories; Stanley’s book belies this assertion. Together with a sage choice of the
most attractive theories on today’s stage, he blends a variety of examples demo-
cratically chosen from topology to computer science, from algebra to complex
variables. The reader will never be at a loss for an illustrative example, or for a
proof that fails to meet G. H. Hardy’s criterion of pleasant surprise.

His choice of exercises will at last enable us to give a satisfying reference to
the colleague who knocks at our door with his combinatorial problem. But best
of all, Stanley has succeeded in dramatizing the subject, in a book that will engage
from start to finish the attention of any mathematician who will open it at page
one. 1

Gian-Carlo Rota



Preface

Enumerative combinatorics is concerned with counting the number of elements
of a finite set S. This definition, as it stands, tells us little about the subject since
virtually any mathematical problem can be cast in these terms. In a genuine
enumerative problem, the elements of S will usually have a rather simple com-
binatorial definition and very little additional structure. It will be clear that S
has many elements, and the main issue will be to count (or estimate) them all
and not, for example, to find a particular element. Of course there are many
variants of this basic problem that also belong to enumerative combinatorics
and that will appear throughout this book.

There has been an explosive growth in combinatorics in recent years,
including enumerative combinatorics. One important reason for this growth has
been the fundamental role that combinatorics plays as a tool in computer science
and related areas. A further reason has been the prodigious effort, inaugurated
by G.-C. Rota around 1964, to bring coherence and unity to the discipline of
combinatorics, particularly enumeration, and to incorporate it into the main-
stream of contemporary mathematics. Enumerative combinatorics has been
greatly elucidated by this effort, as has its role in such areas of mathematics as
finite group theory, representation theory, commutative algebra, algebraic geom-
etry, and algebraic topology.

This book has three intended audiences and serves three different purposes.
First, it may be used as a graduate-level introduction to a fascinating area of
mathematics. Basic knowledge of linear algebra and perhaps a semester of
abstract algebra is a necessary prerequisite for most of the book. Chapter 1 may
serve as an introduction to enumeration at a somewhat less advanced level. The
second intended audience consists of professional combinatorialists, for whom
this book could serve as a general reference. While it is impossible to be completely
comprehensive, we have tried to include at least the major topics within enumera-
tive combinatorics. Finally, this book may be used by mathematicians outside
combinatorics whose work requires them to solve a combinatorial problem.
Judging from countless discussions I've had with mathematicians in diverse
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areas, this situation arises quite frequently. As a result, I have made a special
effort in this book to include coverage of topics from enumerative combinatorics
that arise in other branches of mathematics.

The exercises found at the end of each chapter play a vital role in achieving
the three purposes of this book. The easier exercises (say, with difficulty ratings
of 1 — to 3—) may be attempted by students using this book as a text; the more
difficult exercises are not really meant to be solved (though some readers will
undoubtedly be unable to resist a real challenge), but rather serve as an entry
into areas that are not directly covered by the text. I hope that these more difficult
exercises will convince the reader of the depth and the wide applicability of
enumerative combinatorics, especially in Chapter 3, where it is by no means a
priorievident that partially ordered sets are more than a convenient bookkeeping
device. Solutions or references to solutions are provided for almost ail of the
exercises. :

The method of citation and referencing is, I hope, largely self-explanatory.
All citations to references in another chapter are preceded by the relevant chapter
number. For instance, [3.16] refers to reference 16 in Chapter 3. I have included
no references to outside literature within the text itself; all such references appear
in the Notes at the end of each chapter. Each chapter has its own list of references,
while the references relevant to an exercise are given separately in the solution
to that exercise.

Many people have contributed in many ways to the writing of this book.
Special mention must go to G.-C. Rota for introducing me to the pleasures of
enumerative combinatorics and for his constant encouragement and stimulation.
I must also mention Donald Knuth, whose superb texts on computer science
inspired me to include a wide range of solved exercises with a difficulty level
prescribed in advance. The following people have contributed valuable sugges-
tions and encouragement, and I thank them: Ed Bender, Lou Billera, Anders
Bjorner, Thomas Brylawski, Persi Diaconis, Dominique Foata, Adriano Garsia,
Ira Gessel, Jay Goldman, Curtis Greene, Victor Klee, Pierre Leroux, and Ronald
C. Mullin. In addition, the names of many whose ideas I have borrowed are
mentioned in the Notes and Exercises. I am grateful to a number of typists for
their fine preparation of the manuscript, including Ruby Aguirre, Louise Bal-
zarini, Margaret Beucler, Benito Rakower, and Phyllis Ruby. Finally, thanks to
John Kimmel of Wadsworth & Brooks/Cole Advanced Books & Software for
his support and encouragement throughout the preparation of this book, and to
Phyllis Larimore for her careful editing.

For financial support during the writing of this book I wish to thank the
Massachusetts Institute of Technology, the National Science Foundation, and
the Guggenheim Foundation.

Richard Stanley
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GF(qg), F,

1.v

R[x]
R(x)
R[[x]]
R((x))

complex numbers

nonnegative integers

positive integers

rational numbers

real numbers

integers

the set {1,2,...,n}, for neN (so [0] = Q)

for integers i < j, the set {i,i + 1,...,j}

greatest integer <x

least integer >x

all used for the number of elements of the finite sct X

the set {a,,...,4,} < R, wherea, <*'- <aq, °

the Kronecker delta, equal to 1 if i = j and 0 otherwise
equals by definition

image of the function A

kernel of the homomorphism or linear transformation A
trace of the linear transformation A

the finite field (unique up to isomorphism) with g elements
direct sum of the vector spaces (or modules, rings, etc.) V]

ring of polynomials in the indeterminate x with coefficients
in the integral domain R

ring of rational functions in x with coefficients in R (R(x) is
the quotient field of R[x] when R is a field)

ring of formal power series Y, ¢ a,x" in x with coefficients
a,in R

ring of formal Laurent series Z"Z"o a,x", for some nyeZ, in
x with coefficients a, in R (R((x)) is the quotient field of
R[[x]] when R is a field)
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1.1

CHAPTER 1

What Is Enumerative
Combinatorics?

How to Count

The basic problem of enumerative combinatorics is that of counting the number
of elements of a finite set. Usually we are given an infinite class of finite sets S;
where i ranges over some index set I (such as the nonnegative integers N), and
we wish to count the number f{(i) of elements of each §; “simultaneously.”
Immediate philosophical difficulties arise. What does it mean to “count” the
number of elements of S;? There is no definitive answer to this question. Only
through experience does one develop an idea of what is meant by a “deter-
mination” of a counting function f(i). The counting function f{(i) can be given
in several standard ways:

1. The most satisfactory form of f(i) is a completely explicit closed formula
involving only well-known functions, and free from summation symbols. Only
in rare cases will such a formula exist. As formulas for f(i) become more
complicated, our willingness to accept them as “determinations” of f(i) decreases.
Consider the following examples.

1.1.1 Example. For each neN, let f(n) be the number of subsets of the set
[n] = {1,2,...,n}. Then f(n) = 2", and no one will quarrel about this being a
satisfactory formula for f(n).

1.1.2 Example. Suppose n men give their n hats to a hat-check person. Let f(n)
be the number of ways that the hats can be given back to the men, each man
receiving one hat, so that no man receives his own hat. For instance, f(1) = 0,
J(2) =1, f(3) = 2. We will see in Chapter 2 that

f(n) = nz;io (—1)/it. (1)

This formula for f(n) is not as elegant as the formula in Example 1.1.1, but for
lack of a simpler answer we are willing to accept (1) as a satisfactory formula, In
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fact, once the derivation of (1) is understood (using the Principle of Inclusion-
Exclusion), every term of (1) has an easily understood combinatorial meaning.
This enables us to “understand” (1) intuitively, so our willingness to accept it is
enhanced. We also remark that it follows easily from (1) that f(n) is the nearest
integer to n!/e. This is certainly a simple explicit formula, but it has the dis-
advantage of being “non-combinatorial”; that is, dividing by e and rounding off
to the nearest integer has no direct combinatorial significance.

1.1.3 Example. Let f(n) be the number of n x n matrices M of zeros and ones
such that every row and column of M has three ones. For example, f(0) = f(1) =
f(2) =0, f(3) = 1. The most explicit formula known at present for f(n) is

o (= 1Pn12(B + 3y)12°3%
Jin) =6 Z( )’nalﬁl!gy!%’y) @)

where the sum is over all (n + 2)(n + 1)/2 solutions to « + § + y = n in non-
negative integers. This formula gives very little insight into the behavior of f(n),
but it does allow one to compute f(n) much faster than if only the combinatorial
definition of f(n) were used. Hence with some reluctance we accept (2) as a
“determination” of f(n). Of course if someone were later to prove f(n) =
(n — 1)(n — 2)/2 (rather unlikely), then our enthusiasm for (2) would be con-

siderably diminished.

1.1.4 Example. There are actually formulas in the literature (“nameless here
for evermore”) for certain counting functions f(n) whose evaluation requires
listing all (or almost all) of the f(n) objects being counted! Such a “formula” is
completely worthless.

2. Arecurrence for f(i) may be given in terms of previously calculated f(j)’s,
thereby giving a simple procedure for calculating f(i) for any desired iel. For
instance, let f(n) be the number of subsets of [n] that do not contain two
consecutive integers. For example, for n = 4 we have the subsets @, {1}, {2}, {3},
{4}, {1,3}, {1,4}, {2,4}, so f(4) = 8. It is easily seen that f(n) = f(n — 1) +
S(n — 2) for n > 2. This makes it trivial, for example, to compute f(20). On the
other hand, it can be shown that

f(n) . ——1;(‘!'"+2 - ?n+2),

where 1 = 4(1 + \/3), T=41- \/5). This is an explicit answer, but because it
involves irrational numbers it is a matter of opinion whether it is a better answer
than the recurrence f(n) = f(n — 1) + f(n — 2).

3. Anestimate may be given for f(i). If I = N, this estimate frequently takes
the form of an asymptotic formula f(n) ~ g(n), where g(n) is a “familiar function.”
The notation f(n) ~ g(n) means that lim,_, f(n)/g(n) = 1. For instance, let f(n)
be the function of Example 1.1.3. It can be shown that

J(n) ~ e 2367"(3n)!.

For many purposes this estimate is superior to the “explicit” formula (2).
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4. The most useful but most difficult to understand method for evaluating
f(i)is to give its generating function. We will not develop in this chapter a rigorous
abstract theory of generating functions, but will instead content ourselves with
an informal discussion and some examples. Informally, a generating function is
an “object” that represents a. counting function f(i). Usually this object is a formal
power series. The two most common types of generating functions are ordinary
generating functions and exponential generating functions. If I = N, then the
ordinary generating function of f(n) is the formal power series

Y f(n)x",

n20
while the exponential generating function of f(n) is the formal power series

Y. f(m)x"/n!.
n20

(If 1 = P, the positive integers, then these sums begin at n = 1.) These power
series are called “formal” because we are not concerned with letting x take
on particular values, and we ignore questions of convergence and divergence.
The term x" or x"/n! merely marks the place where f(n) is written. If F(x) =
Y »>0a,x", we call a, the coefficient of x" in F(x) and write

.=[F(x) or a,=F(x),
Similarly we can deal with generating functions of several variables, such as

> ¥ ¥ fi.mn)xty™z"/n!

{20m20n20

(which may be considered as “ordinary” in the indices I, m and “exponential” in
n), or even of infinitely many variables. In this latter case every term should
involve only finitely many of the variables.

Why bother with generating functions if they are merely another way of
writing a counting function? The answer is that we can perform various natural
operations on generating functions that have a combinatorial significance. For
instance, we can add two generating functions (in one variable) by the rule

(B + (g0 = g 000w

a,x" b, x" _ (a, + b,)x"
(n;o n! ) + (n;O _'IT—) B n;O n! '

Similarly, we can multiply generating functions according to the rule

(Zo)(g07) = Bo

where ¢, = Y7 qa;b,_,, or

(52 (g, =)= 5,%.

or




Chapter 1 What Is Enumerative Combinatorics?

where d, = 37_; (1) a;b,_., with () = n!/i!(n — i)!. Note that these operations are
just what we would obtamn by treating generating tunctions as if they obeyed the
ordinary laws of algebra, such as x‘x’/ = x!*J. These operations coincide with the
addition and multiplication of functions when the power series converge for
appropriate values of x, and they obey such familiar laws of algebra as associa-
tivity and commutativity of addition and multiplication, distributivity of multi-
plication over addition, and cancellation of multiplication (ic., if F(x)G(x) =
F{x)H(x) and F(x) # 0, then G(x) = H(x)). In fact, the set of all formal power
serics Y ,»04,Xx" with complex coefficients a, forms a (commutative) integral
domain under the operations just defined. This integral domain is denoted by
CL[[x]] (Actually, C[[x]] is a very special type of integral domain. For readers
with some familiarity with algebra, we remark that C{[x]] is a principal ideal
domain and therefore a unique factorization domain. In fact, every ideal of
C[{x]] has the form (x") for some n > 0. From the viewpoint of commutative
algebra, C[[x]] is a one-dimensional complete regular local ring. These general
algebraic considerations will not concern us here; rather we will discuss from
an elementary viewpoint the properties of C[{[x]] that will be useful to us.)
Similarly, the set of formal power series in the m variables x,, ..., x,, (Where m
may be infinite) is denoted C[[x,,...,x,]] and forms a unique factorization
domain (though not a principal ideal domain for m > 2).

It is primarily through experience that the combinatorial significance of the
algebraic operations of C[[x]] or C[[x,,..., x.]] is understood, as well as the
problem of whether to use ordinary or exponential generating functions (or
various other kinds discussed in later chapters). In Section 3.15, we will explain
to some extent the combinatorial significance of these operations, but even then
experience is indispensable.

If F(x) and G(x) are elements of C[[x]] satisfying F(x)G(x) = 1, then we
(naturally) write G(x) = F(x)™". (Here 1 is short for 1 + Ox + 0x? + ---.) It is
casy to sec that F(x)™ exists (in which case it is unique) if and only if a, # 0,
where F(x) = Y ,508,x". One commonly writes “symbolically” a, = F(0), even
though F(x) is not considered to be a function of x. If F(0) # 0 and F(x)G(x) =
H(x), then G(x) = F(x)~!H(x). More generally, the operation ~! satisfies all the
familiar laws of algebra, provided it is only applied to power series F(x) satisfying
F(0) # 0. For instance, (F(x)G(x))™! = F(x)"1G(x)™!, (F(x)"!)™* = F(x), and so
on. Similar results hold for C[[x,,...,x,1].

L1.S Example. Let (},50a"x")(1 — ax) = Y ,>0c,X" Where « is a non-zero
complex number. Then by the definition of power series multiplication,

. = 1, n=0
" e —a(@")=0, n>1.

Hence ), 0%"x" = (1 — ax)™!, which can also be written

S atx" = :

n>0 1 —oax’
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This formula comes as no surprise; it is simply the formula (in a formal setting)
for summing a geometric series.

Example 1.1.5 provides a simple illustration of a general principle that,
informally speaking, states that if we have an identity involving power series
that is valid when the power series are regarded as functions (so that the
variables are sufficiently small complex numbers), then this identity continues to
remain valid when regarded as an identity among formal power series, provided
the operations involved in the formulas are well-defined for formal power series.
It would be unnecessarily pedantic for us to state a precise form of this principle
here, since the reader should have little trouble justifying in any particular case
the formal validity of our manipulations with power series. We will give several
examples throughout this section to illustrate this contention.

1.1.6 Example. The identity

( Y x"/n!)( Y (- 1)"x"/n!> =1 3)
n20 20

is valid at the function-theoretic level (it states that e*e™* = 1) and is well-defined
as a statement involving formal power series. Hence (3) is a valid formal power
series identity. In other words (equating coefficients of x*/n! on both sides of (3)),
we have

5 -11(}) = bon @
k=0

To justify this identity directly from (3), we may reason as follows. Both sides of
(3) converge for all xe C, so we have

¥ (Z (—1)*("))"—= 1, forall xeC.
n20 \k=0 kj)n
But if two power series in x represent the same function f(x) in a neighborhood
of O, then these two power series must agree term-by-term, by a standard

clementary result concerning power series. Hence (4) follows.

1.1.7 Example. The identity
Yx+1)y/mt=eY x"n!

n20 nz20
is valid at the function-theoretic level (it states that e**! = e-e*), but does not
make sense as a statement involving formal power series. There is no formal
procedure for writing ), 0 (x + 1)*/n! as a member of C[[x]].

Although the expression Y ,.,(x + 1)*/n! does not make sense formally,
there are nevertheless certain infinite processes that can be carried out formally
in C[[x]]. (These concepts extend straightforwardly to C[[x,,...,x,]], but
for simplicity we consider only C[[x]].) To define these processes, we need to
put some additional structure on C[[x]]—namely, the notion of convergence.
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From an algebraic standpoint, the definition of convergence is inherent in the
statement that C[[x]] is complete in a certain standard topology that can be
put on C[[x]]. However, we will assume no knowledge of topology on the part
of the reader and will instead give a self-contained, elementary treatment of
convergence.

If F,(x), Fy(x), ... is a sequence of formal power series, and if F(x) =
Y nz0a,x" is another formal power series, we say by definition that F(x) con-
verges to F(x) as i — co, written F(x) — F(x), provided that for all n > 0 there is
a number 3(n) such that the coefficient of x" in F/(x) is a, whenever i > é(n). In
other words, for every n the sequence

EFx(x). EFz(x),

of complex numbers eventually becomes constant with value a,. An equivalent
definition of convergence is the following. Define the degree of a non-zero formal
power series F(x) = ) ,.04a,x" denoted deg F(x), to be the least integer n such
that a, # 0. Note that deg F(x)G(x) = deg F(x) + deg G(x). Then F;(x) converges
if and only if lim,_, , deg(F;,(x) — Fi(x)) = oo.

We now say that an infinite sum ) ;. , Fi(x) has the value F(x) provided
that Z"=0 Fj(x) - F(x). A similar definition is made for the infinite product
1> 1 Fi(x). To avoid unimportant technicalities we assume that in any infinite
product [ ];., Fj(x), each factor Fy(x) satisfies F,(0) = 1. For instance, let F(x) =
a;x’. Then for i > n, the coefficient of x" in Y ', F(x) is a,. Hence ) ;» o Fi(x) is
just the power series Y .5 a,x". Thus we can think of the formal power series
Y n>0a,x" as actually being the “sum” of its individual terms. The proofs of the
following two elementary results are left to the reader.

1.1.8 Proposition. The infinite series Y ;.o Fj(x) converges if and only if
lim;_ ,, deg F(x) = co. D

1.1.9 Proposition. The infinite product n j=1(1 + Fi(x)), where F;(0) = 0, con-
verges if and only if lim,_ , deg F(x) = oo. a
It is essential to realize that in evaluating a convergent series ) ;- , Fy(x) (or
similarly a product [];., F(x)), the coefficient of x" for any given n can be
computed using only finite processes. For if j is sufficiently large, say j > 5(n),
then deg Fi(x) > n, so that
3n

)

(¥ Fx) = Fx.
njzo0 n j=0

The latter expression involves only a finite sum.

The most important combinatorial application of the notion of convergence
is to the idea of power series compositon. If F(x) = ano a,x" and G(x) are formal
power series with G(0) = 0, define the composition F(G(x)) to be the infinite sum
Y n>08,G(x)". Since deg G(x)" = n-deg G(x) > n, we see by Proposition 1.1.8 that
F(G(x)) is well-defined as a formal power series. We also see why an expres-
sion such as e¢!** does not make sense formally; namely, the infinite series
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Y #>0(l + x)*/n! does not converge in accordance with the above definition. On
the other hand, an expression like e°*~! makes good sense formally, since it has
the form F(G(x)) where F(x) = Y ,50x"/n! and G(x) = Y, x"/n!.

1.1.10 Example. If F(x)e C[[x]] satisfies F(0) = 0, then we can define for any
AeC the formal power series

(1+Fx)y=Y (‘) FCy, (s)
o\

nz

where (}) = A4 — 1)---(4 — n + 1)/n!. In fact, we may regard 4 as an indeter-
minate and take (5) as the definition of (1 + F(x))* as an element of C[[x, 4]]
(or of C[A][[x]]; that is, the coefficient of x" in (1 + F(x))* is a polynomial
in A). All the expected properties of exponentiation are indeed valid, such
as (1 + F(x))*** = (1 + F(x))*(1 + F(x))* (regarded as an identity in the ring
C[[x, 4 1], or in the ring C[[x]] where one takes 4, ueC).

If F(x) = Y .»0a,x", define the formal derivative F'(x) (also denoted :—5 or
DF(x)) to be the formal power series Y ,50na,x" ' =Y .50 + 1)a,. x" It is
easy to check that all the familiar laws of differentiation that are well-defined
formally continue to be valid for formal power series. In particular

(F+GY=F +G
(FGY = F'G + FG'
F(G(x)) = G'(x)F(G(x)).

We thus have a theory of formal calculus for formal power series. The usefulness
of this theory will become apparent in subsequent examples. We first give an
example of the use of the formal calculus that should shed some additional light
on the validity of manipulating formal power series as if they were actual
functions of x.

1.1.11 Example. Suppose F(0) = 1, and let G(x) be the unique power series
satisfying

G'(x) = F(x)/F(x),  G(0)=0. (6)

From the function-theoretic viewpoint we can “solve” (6) to obtain F(x) =
exp G(x), where by definition exp G(x) = ano G(x)"/n!. Since G(0) = O every-
thing is well-defined formally, so (6) should remain equivalent to F(x) = exp G(x)
even if the power series for F(x) converges only at x = 0. How can this assertion
be justified without actually proving a combinatorial identity? Let F(x) = 1 +
Y a>1a.x". From (6) we can compute explicitly G(x) = 3 ,>, b,x", and it is
quickly seen that each b, is a polynomial in finitely many of the a,’s. It then follows
thatifexpG(x) = 1 + Y ,>, ¢,x", then each ¢, will also be a polynomial in finitely
many of the a;’s, say ¢, = p,(a;, a,,...,a,), where m depends on n. Now we know
that F(x) = exp G(x) provided 1 + Y ,., a,x" converges. If two Taylor series
convergent in some neighborhood of the origin represent the same function, then
their coefficients coincide. Hence a, = p,(a,,a,,...,a,) provided 1 + Y ,., a,x"
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converges. Thus the two polynomials a, and p,(a,,a,,...,a,) agree in some
neighborhood of the origin of C™, so they must be equal. (It is well-known
that if two complex polynomials in m variables agree in some open set of C™,
then they are identical) Since a, = p,(a,,a,,...,a,) as polynomials, the identity
F(x) = exp G(x) continues to remain valid for formal power series.

There is an alternative method for justifying the formal solution F(x) =
exp G(x) to (6), which may appeal to topologically inclined readers. Given G(x)
with G(0) = 0, define F(x) = exp G(x) and consider a map ¢ : C[[x]] - C[[x]]
defined by ¢(G(x)) = G'(x) — %‘:—,’ One easily verifies the following: (a) if G
converges in some neighborhood of 0 then ¢(G(x)) = 0; (b) the set # of ali power
series G(x)e C[[x]] that converge in some neighborhood of 0 is dense in C[[x]],
in the topology defined above (in fact, the set C[x] of polynomials is dense); and
(c) the function ¢ is continuous in the topology defined above. From this it
follows that ¢(G(x)) = 0 for all G(x)e C[[x]] with G(0) = 0.

We now present various illustrations in the manipulation of generating
functions. Throughout we will be making heavy use of the principle that formal
power series can be treated as if they were functions.

1.1.12 Example. Find a simple expression for the generating function F(x) =
Y x20G,x", where a, = a, = 1,a, = a,_, + a,_, if n > 2. We have

Fx)= Y ax"=1+x+ Y ax"
20 nz2

=14x+ Y (@, + a,-;)x"
n>2
=14+x+x) a,,x" ' +x*Y a, ,x"2
nS2 w22

=14 x+ x(F(x) — 1) + x2F(x).
Solving for F(x) yields F(x) = 1/(1 — x — x?).

1.1.13 Example. Find a simple expression for the generating function F(x) =
Y m208,x"/n!, where ay = a, = 1, a, = a,_, + (n — 1)a,_, if n > 2. We have

F(x)= Y a,x"/n!
nz0
=14+x+ Y a,x"n!
A2
=1+x+ Y (a,-; + (n— Da,_,)x"/n!. W)
n>2
Let G(x) = Y »>,4,,x"/n! and H(x) =Y, ,(n — 1)a,_,x"/n!. Then G'(x) =
anzan-xx'-l/(" —IN=F(x)—1, and H'(x)= Zuzza —2X"(n—2) =
xF(x). Hence if we differentiate (7) we obtain
F(x)=1+(F(x)— 1)+ xF(x) = (1 + x)F(x).

The unique solution to this differential equation satisfying F(0) = 1 is F(x) =
exp(x + 4x2). (As shown in Example 1.1.11, solving this differential equation is
a purely formal procedure.)



