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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA ) book series aims to provide
the engineering, mathematical, and scientific communities with significant devel-
opments in harmonic analysis, ranging from abstract harmonic analysis to basic
applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical underpin-
nings. Thus, from our point of view, the interleaving of theory and applications and
their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental re-
lationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems and of the
metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating informa-
tion from the broader, but still focused, area of harmonic analysis. This will be a key
role of ANHA. We intend to publish with the scope and interaction that such a host
of issues demands.
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Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in applicable topics such as the following, where harmonic analysis
plays a substantial role:

Biomathematics, bioengineering, Machine learning;
and biomedical signal processing; Phaseless reconstruction;
Communications and RADAR; Quantum informatics;
Compressive sensing (sampling) Remote sensing;
and sparse representations; Sampling theory;
Data science, data mining, Spectral estimation;
and dimension reduction; Time-frequency and Time-scale
Fast algorithms; analysis—Gabor theory
Frame theory and noise reduction; and Wavelet theory

Image processing and
super-resolution;

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and sciences. For example, Wiener’s Tauberian theorem in Fourier
analysis not only characterizes the behavior of the prime numbers but also provides
the proper notion of spectrum for phenomena such as white light; this latter process
leads to the Fourier analysis associated with correlation functions in filtering and
prediction problems, and these problems, in turn, deal naturally with Hardy spaces
in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
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trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’étre of the ANHA series!

College Park, MD, USA . John J. Benedetto



Foreword

The CIMPA13 Conference which took place in August 5-16, 2013, in Mar de Plata,
Argentina, was entitled New Trends in Applied Harmonic Analysis Sparse Rep-
resentations, Compressed Sensing and Multifractal Analysis. The event took
place in a friendly atmosphere, encouraging interaction between speakers and par-
ticipants, among them PhD students, postdocs, and senior scientists. Unfortunately
not all the main speakers have been able to provide a written version of their pre-
sentation, but in many cases one may find slides of more formal talks through the
Internet. General information about the conference can be found at

http://www.nuhag.eu/cimpal3

The topics of the articles which appear in this volume reflect the diversity of re-
cent developments in harmonic analysis, both at the level of pure mathematics and
applications. Some contributions concern interesting mathematical questions aris-
ing from a systematic investigation of structures which have not been sufficiently
well explored so far, and others — such as sparsity with respect to non-orthogonal
systems — are part of a current trend, related to compressed sensing.

To be more precise, let us take a look at the individual contributions: The first
three chapters describe problems related to multifractal analysis (Kathryn E. Hare,
Stephane Seuret, and Yanick Heurteaux).

We then find two chapters thematizing the sparsity of wavelet coefficients. In the
first contribution (by Vladimir Temlyakov), Lebesgue-type inequalities for greedy
approximations are discussed, demonstrating that many of the well-known expan-
sions have the following nice property: Given the set of, say, wavelet coefficients of
a given function in some Besov space (because these spaces can be characterized
by weighted summability conditions with respect to a given wavelet system), it is a
good strategy (not only in the Hilbert spaces setting) to just take more and more of
the “large coefficients’ in order to approximate the function, in fact with an optimal
rate.

In the second chapter in this direction, written by Eugenio Hernandez and
Maria de Natividade, we learn some results on nonlinear approximation for wavelet
bases in weighted function spaces. Here Bernstein- and Jackson-type theorems for
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weighted LP-spaces are provided, showing that wavelet expansions are doing a good
job for the approximation of functions in this setting.

The chapter provided by Pete Casazza and Janet C. Tremain discusses the con-
sequences of the Marcus/Spielman/Srivasta solution to the Kadison-Singer problem
in the context of frame theory with some first glimpse on the consequences within
harmonic analysis.

The chapter “Model Sets and New Versions of Shannon’s Sampling Theorem” by
Basarab Matei presents some interesting insight on universal sampling sets, the so-
called model sets and their relations to quasicrystals. While the classical Shannon
theorem describes how one can recover a band-limited signal, given the spectral
support £ (the support of f), with a formula which obviously depends on the choice
of this set, the new approach discusses situations where the same sampling set can
be used (with a more complicated recovery algorithm) for a large variety of sets €2,
as long as their measure is not too big.

The section written by Xianfeng Hu, Yang Wang, and Qiang Wu treats a some-
what unusual and therefore very interesting topic: Stylometry and Mathematical
Study of Authorship.

The final contribution, entitled “Thoughts on Numerical and Conceptual Har-
monic Analysis,” provided by the author of this introduction gives a glimpse on a
problem within the community of harmonic analysts which should be given a bit
more attention: the interaction between principles of abstract (or as he proposes
conceptual harmonic analysis) and those who are involved in numerical resp. com-
putational harmonic analysis. While the first group is searching for general struc-
tures, the second one is looking for efficient algorithms and their implementation,
often using FFT-based algorithms. The aspect lost in this separation of duties is the
connection between the two approaches, the question, which function spaces are
suitable to describe the errors made by moving from the continuous, to the discrete,
and then of course to the finite setting. The article is just providing a few thoughts in
this direction and suggests to pay more attention to it, not just in the spirit of function
spaces or pure functional analysis but more in the sense of constructive approxima-
tion theory, with quantitative error bounds, estimates for the required problem size
if one needs a guaranteed estimate for the size of the error.

Thus in some sense the article describes the ideas and goals behind the material
presented by the author during the conference in a more concrete but less reflected
format. Important parts of those presentations are available in the form of PDF files
from www.nuhag.eu.

Overall it is clear from this volume that harmonic analysis at large is and will
provide a wide variety of interesting mathematical problems and that research in
this direction will continue to be fruitful and rewarding for those interested in math-
ematical analysis in general, be it abstract or more application oriented.

Vienna, Austria Hans Feichtinger
October 2015



Preface

This book evolved from the written notes that were distributed to the students
who participated in the CIMPA school, New Trends in Applied Harmonic Analy-
sis: Sparse Representations, Compressed Sensing and Multifractal Analysis, which
took place in Mar del Plata (Argentina) in August 2013.

This event was motivated by the recent interactions which developed between
harmonic analysis and signal and image processing during the last 10 years. During
that time, several technological deadlocks were solved through the resolution of
deep theoretical problems in harmonic analysis. The purpose of this school was to
focus on two particularly active areas which are representative of such advances:
multifractal analysis and compressed sensing. The courses were taught by leaders
in these areas and covered both theoretical aspects and applications. Most of the
attendance was composed of PhD students and postdocs from diverse backgrounds
(mathematics, signal and image processing, etc.), and the corresponding chapters
of this book reflect the pedagogical care of the lecturers, in particular in the careful
treatment of all needed prerequisites, and the illustration of the developments of
each topic by several examples. Another original feature of this book is that some
subjects overlap, with views taken from different perspectives, thus offering an in-
depth picture of these scientific areas.

Let us be more specific. Multifractal analysis offers new tools of classification
for signals and images derived from their scaling invariance properties. The part of
the book concerning this subject include the contribution of K. Hare, “Multifractal
Analysis of Cantor-like Measures,” which deals with basics of fractal analysis and
then focuses on the key example of Cantor-like measures. The contribution of Y.
Heurteaux “An introduction to Mandelbrot cascades™ goes one step further in mod-
eling complexity and deals with the multifractal measures supplied by multiplicative
cascades; a careful treatment of these examples is motivated both by the historical
role played by these measures as models for the dissipation of energy in turbu-
lent fluids and by the importance that they have recently acquired in other areas of
mathematics (fragmentation, coalescence, harmonic measure associated with frac-
tal sets, Schramm-Loewner evolution, etc.). Finally, the contribution of Stéphane
Seuret “Multifractal analysis and Wavelets” deals with the extensions that these

Xi
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ideas have known in the setting of functions. The main tool here is wavelet analy-
sis, a tool which is now prevalent in applied analysis and reappears in several other
chapters of this book. Here its role is to yield a characterization of both pointwise
and global regularity of functions. This property explains the success of wavelets
in applied multifractal analysis, since this subject can be seen as unfolding the rela-
tionships between pointwise and global regularity and then deriving practical clas-
sification tools from these regularity characteristics.

Recently, many powerful techniques have been developed emphasizing the role
of sparsity in signal and image processing. These new methods have had a sub-
stantial impact in areas like sampling, data compression and representation, atomic
decompositions, wavelets, frames, and high-dimensional data analysis. In particu-
lar compressed sensing represents a new paradigm in signal and image processing,
allowing to reconstruct compressible data from the knowledge of an underdeter-
mined system, through an ¢! minimization. The mathematics behind these methods
is rich and sophisticated and presents new challenges. The chapters by Temlyakov
“Lebesgue-type Inequalities for Greedy Approximation” and Herndndez et. al “‘Re-
sults on Nonlinear Approximation for Wavelet Bases in Weighted Function Spaces”
are excellent examples of the advances in this area.

On another note, just before the school took place, the Kadison-Singer conjec-
ture was solved, and since this had deep impact on harmonic analysis — because
of the implications with respect to the decomposition of frames into a finite num-
ber of Riesz bases Feichtinger conjecture — Pete Casazza gave a really nice lecture
about the diverse attempts in the solution and agreed to write a chapter about all the
implications.

Note that the contribution of Y. Heurteaux was not part of the courses taught at
the CIMPA school of August 2013, but grew from the notes of another course taught
at a fractal conference that took place in Porquerolles (France) in September 2013.

Nashville, TN, USA Akram Aldroubi
Buenos Aires, Argentina Carlos Cabrelli
Paris, France Stephane Jaffard
Buenos Aires, Argentina Ursula Molter

October 2015
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