SCIENTIFIC
PROGRAMMING

C-Lan rithms and Models in Science

Luciano Maria Barone - Enzo Marinari
Giovanni Organtini « Federico Ricci-Tersenghi




SCIENTIFIC
PROGRAMMING

C-Language, Algorithms and Models in Science

Luciano Maria Barone-+-Enzo Marinari
Giovanni Organtini:s~Fédefico Ricci-Tersenghi

“Sapienza” Universita di Rema, |taly’

\"ﬁ World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING - SHANGHAI - HONG KONG -—TAIPEI - CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NI 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Barone, Luciano M. (Luciano Maria), author.

Scientific programming : C-language, algorithms and models in science / by Luciano M. Barone
(Sapienza Universita di Roma, Italy), Enzo Marinari (Sapienza Universita di Roma, Italy),
Giovanni Organtini (Sapienza Universita di Roma, Italy) & Federico Ricci-Tersenghi (Sapienza
Universita di Roma, Italy).

pages cm

Includes bibliographical references.

ISBN 978-9814513401 (hardcover : alk. paper)

1. Science--Data processing. 2. Science--Mathematical models. 3. C (Computer program
language) 4. Computer programming. I. Marinari, Enzo, author. II. Organtini, Giovanni, author.
I1I. Ricci-Tersenghi, F. (Federico), author. IV. Title.

Q183.9.B37 2014

502.85'513--dc23

2013012751

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2013 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, withour written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

Printed in Singapore by World Scientific Printers.



32ua13g U1 sjapojy pue swyuiohbyy ‘abenbuet-g

INIWNEH90Hd
JI4ILNTIIS



-

AL, B B SE #EPDFIE U5 0] : www. ertongbook. com



For Rossella
so patient with me and much more

For Margherita,
a flower indeed,

and for Chiara,

fair by name and by nature

For Federica, Lorenzo and Giulia

“the summum bonum was in the gifts of nature,
in those of fortune, in having many friends,
and many and good children”

Miguel de Cervantes Saavedra
“Don Quixote” (1615)

For my children Gaia and Marco
that make my life full of joy and fun,
bright colors and laughing sounds
...every day more and more!






Preface

A book teaching how to program should help its readers to learn with mini-
mal effort how to write properly working, efficient and interesting programs.
Its potential readers may have very different interests, and the books that
are currently available on the shelves generally do not take these needs into
account. They mostly address a generic reader, whose interests the author
is unaware of.

Books presenting a programming language in a specific context are much
more effective and nicer to read, since the reader learns at the same time
both the language and the basic concepts needed to formulate the prob-
lems one wants to solve. These books obviously address a more specialized
audience. However, in many cases they are very precious and they are the
right choice to teach professional and university courses.

The collection of programming manuals addressing a specialized audi-
ence is rather scarce and those dedicated to scientific programming even less
numerous. Since computers play an increasingly important role in modern
science this situation is very unfortunate. In many fields it is essential to
both being able to express ideas into words or formulas and to translate
them into a precise and rigorous programming language.

This book very nicely fills this gap in the current literature. The dif-
ferent parts of the C language are presented together with scientifically
interesting algorithms, each one of which is then put into practice. Of-
ten the algorithms are not at all basic, and their theoretical motivation
is explained in detail. Various implementations of a single algorithm are
discussed in depth, keeping the different, sometimes opposing needs into
account: precision, execution efficiency, code compatibility and readability.
In this way the reader learns how to tackle a new problem while keeping
these various aspects in mind, and how to select an optimal choice fitting

xXv



xvi Scientific Programming: C-Language, algorithms and models in science

his needs.

The topics have been carefully selected and the problems are very accu-
rately discussed, as are the codes included in the book. Indeed, this book
is the result of years of experience in teaching academic courses in scientific
programming. Moreover, the authors have many years of experience ad-
dressing scientific problems with the use of the computer, introducing new
techniques and designing algorithms which have become commonly used.
It is hard to think of authors more qualified than the present ones to write
this kind of book.

The original setup and the authors’ extraordinary talent make this book
an excellent product, a reference point for all those interested in scientific
programming.

Rome, February 10, 2006

Giorgio Parisi

Giorgio Parisi is a full professor in Theoretical Physics at the Sapienza
University of Rome. He is a member of the the French and of the American
Academy of Sciences and of the Lincei Academy. For his work in theoretical
physics he received the International Feltrinelli prize in 1986, the Boltzmann
medal in 1992, the Dirac medal and prize in 1999, the Fermi medal in 2002,
the Nonino prize and the Dannie Heineman prize in 2005. the Galileo Prize
in 2006, the Microsoft European Science prize in 2007, the Lagrange in
2009 and the Max Planck medal in 2011. He wrote three books and over
500 scientific articles.



Foreword

The decision to write a textbook is always a difficult and demanding choice
for scientists engaged full-time in research activities. It is a very time
consuming task, and it requires to have a clear idea about the direction to
take in order to produce an innovative book.

Fortunately, some years ago, we started teaching, together with some
other colleagues, a course about scientific computing to physics students of
the Mathematical, Physical and Natural Science Faculty of the Sapienza
University in Rome. These courses were a novelty. They were introduced
in the context of the recent Italian and European reform, the so-called three
plus two, aiming to provide students with skills which allow them to operate
professionally in a scientific and technological environment.

The subject of these courses is based on our computer programming
experience in various fields of scientific research. Throughout our teaching
we realized that many fundamental notions about computing for scientific
applications are never discussed in the standard manuals and textbooks.
We were not able to find an adequate textbook for these kind of courses.
Indeed, commonly used textbooks belong to one of the two following cate-
gories:

(1) programming language manuals;

(2) numerical analysis textbooks.
The former often contain examples on how to use a programming language
without considering the application context. They contain plenty of exam-
ples and exercises, which are more game-like or have a concern a manage-
rial context; the few examples written in a precise mathematical form are
too simple for a university student and are therefore not appropriate for
a scientific (engineering, mathematics, physics, chemistry, biology) faculty.
On the other hand, numerical analysis textbooks are appropriate for ad-

xvii



xviii Scientific Programming: C-Language, algorithms and models in science

vanced students and usually require a good knowledge of programming and
of mathematical and physical notions. Using two textbooks, one of each
category, does not solve the problem either, because the important topics
are not correlated as they do not follow the same track.

Finally, we became convinced of the fact that the current survey of text-
books does not include an introductory programming manual for scientific
university courses.

Forgetting all about the existing textbooks, we started working on an
innovative scheme which we considered adequate for the new university
courses. Moreover, the possibility to write a new textbook seemed interest-
ing. We also felt that the project we were working on had an international
feel and this stimulated us.

We conceived and built a scheme not just to teach students a program-
ming language, but rather to give them the ability to build models to solve
scientific problems by programming. The teaching method we chose takes
into account the student skills evolution in time. The examples given are
always accessible to the student. The first examples simply refer to mathe-
matical problems in infinitesimal calculus. In the second part fundamental
problems of both physics and mathematics are tackled, such as the study
of differential equations and their application to problems in dynamics. Fi-
nally, in the third part, we discuss rather complex optimization problems.

The textbook is structured in three parts, reflecting the three teaching
phases and corresponding more or less to three university courses. The
complete journey goes hand in hand with a complete engineering or sci-
entific graduate course. The three courses we propose are strongly linked,
and guide the student from the condition of illiterate in computer science
to an advanced and competent level. At the same time, the three parts
are rather independent and allow a teacher to select only certain parts for
particular courses.

The title of this textbook is short, but expresses various strong ideas.
The Programming expresses the fact that we teach techniques on how to
build models and generic algorithms to solve a problem, while creating a
good executable code. The Scientific has a double meaning: it partly refers
to the fact that we treat scientific problems, and partly refers to our way
of introducing programming methods. Methods, statements and models
are not given as recipes, but for each one of these we carefully examine
their "raison d’etre", the mechanisms which make them useful, the possible
alternatives and their pro and cons.



Foreword xix

What this book is not

As we already mentioned, this book is not a C manual: there are already
many manuals available in print and on the Internet. In Scientific Pro-
gramming we introduce the C language as a tool to learn how to program:
a process which is fully analogue to the one in which you learn how to talk.
Just like you need a language when you learn how to talk, you need one to
learn how to program. However, it is beyond the scope of this textbook to
analyze the C language in-depth in all its aspects. For this kind of analysis,
we refer the reader to the bibliography. Still, this textbook contains enough
information to introduce the reader to the language without having to refer
to a manual.

This textbook is not a generic programming manual either: no man-
agerial, graphics or multimedia applications are discussed in detail. The
scientific applications mainly consist in calculating and organizing data.
The results are often represented in a graphic way, but these were mostly
obtained with specialized programs. These programs are easily available
on the Internet, and we do not discuss their setup.

Nor is this book a numerical analysis manual. It includes many, some-
times advanced, computation algorithms, but they are always presented in
a simple and intuitive way. We do not want to discuss all aspects of nu-
merical analysis from a mathematical point of view. We refer the reader to
the bibliography for the proof of theorems, the detailed discussion of what
certain choices imply and the theoretical aspects. Nevertheless, a diligent
student will acquire all the tools needed to write complete, accurate and
efficient programs.

How to use this textbook

This textbook consists of three parts. Each part reflects the contents of the
courses we teach in the corresponding year of an undergraduate program.
Therefore, each part contains the material of a first level, 6 credits university
course.

The first part does not require any specific prior knowledge about pro-
gramming. The student is guided along a track including the knowledge
of the basic tools (the computer and the programming language), which is
essential to understand the techniques to design the solutions. In the first
part we aim to familiarize the student with the techniques by learning how



XX Scientific Programming: C-Language, algorithms and models in science

to use them in simple and interesting examples. The student learns the
elementary and fundamental C constructs and how to apply these in the
basic numerical techniques (derivatives, integrals, sorting).

In the second part, we focus on the design aspect. In each chapter we
consider the solution to a different problem. This is the right time to show,
with examples, the general techniques to solve problems, to thoroughly
analyze the advanced aspects of the language and to consider elements often
neglected, such as the program’s robustness and efficiency. The examined
problems are original and stimulating.

In the third part we assume the student fully masters the tools (in
particular the programming language). We discuss complex computation
problems, which are common in engineering or science, along with code
optimization techniques. Also in this part the topics we treat offer a generic
overview of the techniques in use, but we frequently examine new and lesser
known ones. In our opinion, the third part is more dense of what can be
reasonably treated in a standard course and the teacher is free to choose
which topics to discuss.

We hope that the student using this textbook becomes at least half as
enthusiastic as we were while writing it. In which case our book will turn
out to be, beyond any doubt, very useful.

Acknowledgments

At the end of this project, we first of all want to thank our colleagues, our
collaborators, our PhD students and all those who depend on us in one way
or the other, since in order to write the book we have taken away crucial
time from them.

A special thanks goes to the Director and the personnel of the Physics
Department of our University, and to the Directors and the personnel of the
National Institute of Nuclear Physics and the National Institute of Matter
Physics (now unfortunately no longer existing) Sections of Rome 1: without
their help our job would have been impossible.

Thanks to our colleagues Zhen’an Liu of Beijing and Wu Hao of Shang-
hai, for helping us write the citation in Chapter 3 and to Anna Malerba for
the citation in Chapter 2.

We also got some very important help from all our colleagues teaching
the programming courses in the Physics Graduate Program of the Sapienza



Foreword xxi

University. The students attending our courses stimulated us and pressed
us with questions and discussions which were often very important for the
development of this textbook. Though they are far too many to quote them
all here, we are very grateful to all of them.

Some PhD students and young researchers helped us during our courses
throughout the years, and they corrected many, small and big, errors: we
sincerely thank Tommaso Castellani, Tommaso Chiarusi, Jovanka Lukic
and Valery Van Kerrebroeck.

Carlo Piano has been helping us with organizing the Italian version of
the book, and his help has been for us very important.

Lisa Ferranti has been somehow the real responsible of all this. As the
editor of the Italian version of the book she has believed in the book from
the first moment, she has helped us, she has pushed us, she has brought us
to print the book. We could not thank her more warmly.

Introduction to the English version

It took a little time, after we realized that we considered appropriate having
this book available in English, finding the strength to go ahead with the
project. We were indeed convinced it was a very good idea, since there is
here an original approach that we hope will be useful to many students ap-
proaching the world of scientific computing. Also we had signals from many
non-Italian colleagues, using the book (thanks to their brilliant knowledge
of our language) as a trace for their courses but being unable to really give
it, because of the language, as a source to the students.

We are very indebted to Valery Van Kerrebroeck that translated the text
from Italian, with passion and dedication: without her our effort would
probably have been vain. Many young colleagues close to our research
groups have helped us in a final revision of the translation; even if they are
too many to be quoted individually, they should know we are really grateful
to all of them.

Rome, June 7th, 2013.

Luciano M. Barone, Enzo Marinari, Giovanni Organtini, Federico Ricci-
Tersenghi.






Technical note

This textbook was written using IXTEX|[Mittelbach and Goosens (2004)]
version 3.141592-2.1 on a Linux operating system!.

We used the emacs and nedit editors to write the text and the pro-
grams. We compiled the latter with gcc version 3.3.3. Generally we used
the -pedantic option which generates a message in case the code is not
compatible with the ANSI standard. We adopted this standard throughout
the complete textbook, except for a few cases which we mentioned explic-
itly.

The figures were generated with the IATEX pstricks package or the
programs gnuplot and xfig, in Linux. We used different packages following
the common habit in scientific environment to choose the best tools for
a given problem; this is quite different from other environments, where
usually the choices are dictated by conventions, convenience or imposition.
This also allows us to show how versatile open source?* programs are.

Typographical Conventions

We have quoted the programming language constructs and the system
commands with a different font than the one used for the text. Its hor-
izontal dimension is constant (monospaced) and does not vary with the
character, as in

ILinux is a trademark registered by Linus Térvalds.

20pen source software is computer software whose source code is freely available and
provided under an open source license allowing it to be studied, copied, changed and
redistributed.

xxiii



xxiv Scientific Programming: C-Language, algorithms and models in science

while

1ls -1la

return 0;

for (i = 0; i < 10; i++) {

We also used a similar font to represent URL names (Uniform Resource
Locator) of Websites:

http://www.pearsoned.com
http://www.scientificprogramming.org

Characters that possibly cause confusion in the middle of the text (es-
pecially punctuation marks) are represented with a gray background: [, .

To show the syntax and the general definitions of commands, statements
and functions we used a different monospaced character, as in

#define symbol [value]

In this scope words in italics, such as symbol, represent generic elements
which have to be replaced by the actual ones. When they are included
between square brackets, as in [value], they represent optional elements
which may or may not be present. The example above describes several
possible alternatives, as in

#define _DEBUG
#define MAX 100

In the first example symbol is replaced by _DEBUG and the optional value
[value] is not present. In the second, symbol is replaced by the string
MAX and an optional value 100 is present, described as value in the syntax
example.

Program variable names are always chosen on the basis of what they
represent.

Generally, programmers use a US keyboard. The reason is simply be-
cause programming languages often use the symbols present in this type of
keyboard, which is considered to be international, and not in others. The
C language is no exception to this rule and uses curly brackets and the
tilde (7). In case one does not have a US keyboard, the required symbols
can be created using certain combinations of the keys in order to avoid
having to redefine the keyboard.

In the Microsoft Windows operating systems, the opening curly brackets
can be obtained by holding the A1t key and pressing subsequently the keys
1, 2 and 3 of the numerical keypad. The closing curly bracket is obtained



