

ROBUST EQUITY PORTFOLIO MANAGEMENT

+ website

Formulations, Implementations, and Properties using MATLAB

WOO SHANG KIM . JANG HO KIM . FRANK J. FABOZZI

WILEY

Robust Equity Portfolio Management + Website

Formulations, Implementations, and Properties Using MATLAB

WOO CHANG KIM JANG HO KIM FRANK J. FABOZZI

WILEY

Copyright © 2016 by Woo Chang Kim, Jang Ho Kim, and Frank J. Fabozzi. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the Web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Names: Kim, Woo Chang. | Kim, Jang-Ho. | Fabozzi, Frank J.

Title: Robust equity portfolio management + website : formulations,

implementations, and properties using MATLAB / Woo Chang Kim, Jang Ho Kim, Frank J. Fabozzi.

Description: Hoboken: Wiley, 2015. | Series: Frank J. Fabozzi series | Includes index.

Identifiers: LCCN 2015030347 | ISBN 9781118797266 (hardback) | ISBN 9781118797303 (epdf) | ISBN 9781118797372 (epub)

Subjects: LCSH: Porffolio management. | Investments-Mathematical models. | Investment analysis-Mathematical models. | BISAC: BUSINESS & ECONOMICS / Investments & Securities.

Classification: LCC HG4529.5 .K556 2015 | DDC 332.60285/53-dc23 LC record available at http://lccn.loc.gov/2015030347

Cover Design: Wiley

Cover Image: @ Danil Melekhin/Getty Images, Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Robust Equity Portfolio Management + Website

The Frank J. Fabozzi Series

Fixed Income Securities, Second Edition by Frank J. Fabozzi

Focus on Value: A Corporate and Investor Guide to Wealth Creation by James L. Grant and James A. Abate

Handbook of Global Fixed Income Calculations by Dragomir Krgin

Managing a Corporate Bond Portfolio by Leland E. Crabbe and Frank J. Fabozzi

Real Options and Option-Embedded Securities by William T. Moore

Capital Budgeting: Theory and Practice by Pamela P. Peterson and Frank J. Fabozzi

The Exchange-Traded Funds Manual by Gary L. Gastineau

Professional Perspectives on Fixed Income Portfolio Management, Volume 3 edited by Frank J. Fabozzi

Investing in Emerging Fixed Income Markets edited by Frank J. Fabozzi and Efstathia Pilarinu

Handbook of Alternative Assets by Mark J. P. Anson

The Global Money Markets by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

The Handbook of Financial Instruments edited by Frank J. Fabozzi

Interest Rate, Term Structure, and Valuation Modeling edited by Frank J. Fabozzi

Investment Performance Measurement by Bruce J. Feibel

The Handbook of Equity Style Management edited by T. Daniel Coggin and Frank J. Fabozzi

The Theory and Practice of Investment Management edited by Frank J. Fabozzi and Harry M. Markowitz

Foundations of Economic Value Added, Second Edition by James L. Grant

Financial Management and Analysis, Second Edition by Frank J. Fabozzi and Pamela P. Peterson

Measuring and Controlling Interest Rate and Credit Risk, Second Edition by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

Professional Perspectives on Fixed Income Portfolio Management, Volume 4 edited by Frank J. Fabozzi

The Handbook of European Fixed Income Securities edited by Frank J. Fabozzi and Moorad Choudhry

The Handbook of European Structured Financial Products edited by Frank J. Fabozzi and Moorad Choudhry

The Mathematics of Financial Modeling and Investment Management by Sergio M. Focardi and Frank J. Fabozzi

Short Selling: Strategies, Risks, and Rewards edited by Frank J. Fabozzi

The Real Estate Investment Handbook by G. Timothy Haight and Daniel Singer

Market Neutral Strategies edited by Bruce I. Jacobs and Kenneth N. Levy

Securities Finance: Securities Lending and Repurchase Agreements edited by Frank J. Fabozzi and Steven V. Mann

Fat-Tailed and Skewed Asset Return Distributions by Svetlozar T. Rachev, Christian Menn, and Frank J. Fabozzi

Financial Modeling of the Equity Market: From CAPM to Cointegration by Frank J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm

Advanced Bond Portfolio Management: Best Practices in Modeling and Strategies edited by Frank J. Fabozzi, Lionel Martellini, and Philippe Priaulet

Analysis of Financial Statements, Second Edition by Pamela P. Peterson and Frank J. Fabozzi

Collateralized Debt Obligations: Structures and Analysis, Second Edition by Douglas J. Lucas, Laurie S. Goodman, and Frank J. Fabozzi

Handbook of Alternative Assets, Second Edition by Mark J. P. Anson

Introduction to Structured Finance by Frank J. Fabozzi, Henry A. Davis, and Moorad Choudhry

Financial Econometrics by Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio M. Focardi, and Teo Jasic

Developments in Collateralized Debt Obligations: New Products and Insights by Douglas J. Lucas, Laurie S. Goodman, Frank J. Fabozzi, and Rebecca J. Manning

Robust Portfolio Optimization and Management by Frank J. Fabozzi, Peter N. Kolm, Dessislava A. Pachamanova, and Sergio M. Focardi

Advanced Stochastic Models, Risk Assessment, and Portfolio Optimizations by Svetlozar T. Rachev, Stogan V. Stoyanov, and Frank J. Fabozzi

How to Select Investment Managers and Evaluate Performance by G. Timothy Haight, Stephen O. Morrell, and Glenn E. Ross

Bayesian Methods in Finance by Svetlozar T. Rachev, John S. J. Hsu, Biliana S. Bagasheva, and Frank J. Fabozzi

The Handbook of Municipal Bonds edited by Sylvan G. Feldstein and Frank J. Fabozzi

Subprime Mortgage Credit Derivatives by Laurie S. Goodman, Shumin Li, Douglas J. Lucas, Thomas A Zimmerman, and Frank J. Fabozzi

Introduction to Securitization by Frank J. Fabozzi and Vinod Kothari

Structured Products and Related Credit Derivatives edited by Brian P. Lancaster, Glenn M. Schultz, and Frank J. Fabozzi

Handbook of Finance: Volume I: Financial Markets and Instruments edited by Frank J. Fabozzi

Handbook of Finance: Volume II: Financial Management and Asset Management edited by Frank J. Fabozzi

Handbook of Finance: Volume III: Valuation, Financial Modeling, and Quantitative Tools edited by Frank J. Fabozzi

Finance: Capital Markets, Financial Management, and Investment Management by Frank J. Fabozzi and Pamela Peterson-Drake

Active Private Equity Real Estate Strategy edited by David J. Lynn

Foundations and Applications of the Time Value of Money by Pamela Peterson-Drake and Frank J. Fabozzi

Leveraged Finance: Concepts, Methods, and Trading of High-Yield Bonds, Loans, and Derivatives by Stephen Antczak, Douglas Lucas, and Frank J. Fabozzi

Modern Financial Systems: Theory and Applications by Edwin Neave

Institutional Investment Management: Equity and Bond Portfolio Strategies and Applications by Frank J. Fabozzi

WCK

To my daughter, Joohyung

JHK

To my wife, Insun Jung

FJF

To my sister, Lucy

Preface

The mean-variance model for constructing portfolios, introduced by Harry Markowitz, changed how portfolio managers analyze portfolios, especially for managing equity portfolios. The model provides a strong foundation for quantifying the return and risk attributes of a portfolio, as well as mathematically forming optimal portfolios. Following the 1952 publication of Markowitz's mean-variance model, there have been numerous extensions of the original model, particularly starting in the 1990s, that have sought to overcome criticisms of the original model. In this book, we focus on one of these extensions, the construction of robust portfolios for equity portfolio management within the mean-variance framework. We refer to this approach as robust equity portfolio management.

The book will be most helpful for readers who are interested in learning about the quantitative side of equity portfolio management, mainly portfolio optimization and risk analysis. Mean-variance portfolio optimization is covered in detail, leading to an extensive discussion on robust portfolio optimization. Nonetheless, readers without prior knowledge of portfolio management or mathematical modeling should be able to follow the presentation, as basic concepts are covered in each chapter. Furthermore, the main quantitative approaches are presented with MATLAB examples, allowing readers to easily implement portfolio problems in MATLAB or similar modeling software. An online appendix provides the MATLAB codes presented in the chapter boxes (www.wiley.com/go/robustequitypm).

Although this is not the only book on robust portfolio management, it distinguishes itself from other books by focusing solely on quantitative robust equity portfolio management, including step-by-step implementations. Other books, such as *Robust Portfolio Optimization and Management* by Frank J. Fabozzi, Petter N. Kolm, Dessislava Pachamanova, and Sergio M. Focardi, also introduce robust approaches, but we believe that readers seeking to learn the formulations, implementations, and properties of robust equity portfolios will benefit considerably by studying the chapters in the current book.

Woo Chang Kim Jang Ho Kim Frank J. Fabozzi

Contents

Preface	ХĬ
CHAPTER 1 Introduction	1
CHAPTER 2 Mean-Variance Portfolio Selection	8
CHAPTER 3 Shortcomings of Mean-Variance Analysis	22
CHAPTER 4 Robust Approaches for Portfolio Selection	39
CHAPTER 5 Robust Optimization	66
CHAPTER 6 Robust Portfolio Construction	95
CHAPTER 7 Controlling Third and Fourth Moments of Portfolio Returns via Robust Mean-Variance Approach	122
CHAPTER 8 Higher Factor Exposures of Robust Equity Portfolios	137
CHAPTER 9 Composition of Robust Portfolios	164
CHAPTER 10 Robust Portfolio Performance	185

X CONTENTS

CHAPTER 11 Robust Optimization Software	216
About the Authors	231
About the Companion Website	233
Index	235

diam'r.

Introduction

The foundations of what is popularly referred to as "modern portfolio theory" is attributable to the seminal work of Harry Markowitz, published more than a half a century ago. 1 Markowitz provided a framework for the selection of securities for portfolio construction to obtain an optimal portfolio. To do so, Markowitz suggested that for all assets that are candidates for inclusion in a portfolio, one should measure an asset's return by its mean return and risk by an asset's variance of returns. In the selection of assets to include in a portfolio, the Markowitz framework takes into account the co-movement of asset returns by using the covariance between all pairs of assets. The portfolio's expected return and risk as measured by the portfolio variance are then determined by the weights of each asset included in the portfolio. For this reason, the Markowitz framework is commonly referred to as mean-variance portfolio analysis. Markowitz argued that the optimal portfolio should be selected based on the trade-off between a portfolio's return and risk. While these concepts are considered the basis of portfolio construction these days, the development of the mean-variance model shaped how investment managers analyze portfolios and sparked an overwhelming volume of research on the theory of portfolio selection.

Once the fundamentals of modern portfolio theory were established, studies addressing the limitations of mean-variance analysis appeared, seeking to improve the effectiveness of the original model under practical situations. Some research efforts concentrated on reducing the sensitivity of portfolios formed from mean-variance analysis. Portfolio sensitivity means that the resulting portfolio constructed using mean-variance analysis and its performance is heavily dependent on the inputs of the model. Hence, if the estimated input values were even slightly different from their true values, the estimated optimal portfolio will actually be far from the best choice. This is especially a drawback when managing equity portfolios because the equity market is one of the more volatile markets, making it difficult to estimate values such as expected returns.

In equity portfolio management, there has been increased interest in the construction of portfolios that offer the potential for more robust performance even during more volatile equity market periods. One common approach for doing so is to increase the robustness of the input values of mean-variance analysis by adopting estimators that are more robust to outliers. It is also possible to achieve higher robustness by focusing on the outputs of the mean-variance model by performing simulations for collecting many possible portfolios and then finally arriving at one optimal portfolio based on all the possible ones. There are other methods that are based on the equilibrium of the equity market for gaining robustness.²

Although various techniques have been applied to improve the stability of portfolios, one of the approaches that has received much attention is robust portfolio optimization. Robust optimization is a method that incorporates parameter uncertainty by defining a set of possible values, referred to as an uncertainty set. The optimal solution represents the best choice when considering all possibilities from the uncertainty set. Robust optimization was developed for addressing optimization problems where the true values of the model's parameters are not known with certainty, but the bounds are assumed to be known. In 1973, Allen Soyster discussed inexact linear programming; in the 1990s, the initial approach expanded to incorporate a number of ways for defining uncertainty sets and addressing more complex optimization problems. When robust optimization is extended to portfolio selection, the inputs used in mean-variance analysis—the vector of mean returns and the covariance matrix of returns—become the uncertain parameters for finding the optimal portfolio. Since the turn of the century, there have been numerous proposals for formulating robust portfolio optimization problems. Much of the focus has been on mathematical theories behind uncertainty set construction and reformulations resulting in optimization problems that can be solved efficiently; and, as a result, there are many formulations that can be used to build robust equity portfolios.

Even though there has been considerable development on robust portfolio management, most approaches require skills far beyond perfecting mean-variance analysis. For example, it is not an easy task for a portfolio manager without extensive background knowledge in optimization and mathematics to understand robust portfolio optimization formulations. More importantly, being able to interpret robust formulations is only the first step. The second step requires solving the optimization problem to arrive at the optimal decision. Programming expertise, in addition to optimization and mathematics, is necessary in the second step because most robust formulations require complex computations. Thus, while the need and the value of robust portfolio management are apparent, only those with appropriate training will be equipped to explore the advanced methods for improving portfolio robustness.

This book is aimed at providing a step-by-step guide for using robust models for optimal portfolio construction. It is not assumed that the reader has prior knowledge in portfolio management and optimization. In this book, the basics of portfolio theory and optimization, along with programming examples, will allow the reader to gain familiarity with portfolio optimization. Once the fundamentals of portfolio management are outlined, robust approaches for managing portfolios are explained with an emphasis on robust portfolio optimization. Details on robust formulations, implementation of robust portfolio optimization, attributes of robust portfolios, and robust portfolio performance will prepare the reader to utilize robust portfolio optimization for managing portfolios. In this book, we not only review theoretical developments but provide numerous programming examples to demonstrate their use in practice. The programming examples that appear throughout the book illustrate the details of implementing various techniques including methods for constructing robust equity portfolios.

1.1 OVERVIEW OF THE CHAPTERS

The book is divided into three parts. The first part, Chapters 2 through 4, introduces the mean-variance model, discusses its shortcomings, and explains common approaches for increasing the robustness of portfolios. The second part, Chapters 5 and 6, contains an overview of optimization and details the steps involved in formulating a robust portfolio optimization problem. The third part, Chapters 7 through 10, focuses on analyzing robust portfolios constructed from robust portfolio optimization by identifying attributes and summarizing performances.

Chapter 2 begins by describing how portfolio return and risk are measured, which leads to formulating the mean-variance portfolio problem. Mean-variance analysis finds the optimal portfolio from the trade-off between return and risk, and the framework also explains the benefits of diversification. Chapter 3 investigates shortcomings of the mean-variance model, which limit its use as a strategy for managing equity portfolios; improvements can be made with respect to measuring risk, estimating the input variables, and reducing the sensitivity of portfolio weights. In particular, the combination of estimation errors in the input values and high sensitivity of the resulting portfolio is a major issue with the mean-variance model. Therefore, in Chapter 4, practices for reducing the sensitivity of portfolios are demonstrated, including robust statistics, simulation methods, and stochastic programming.

Chapter 5 presents a comprehensive overview of optimization, including definitions of linear programming, quadratic programming, and conic optimization. The chapter also discusses how robust optimization transforms basic optimization problems so as to incorporate parameter

uncertainty. The discussion is extended to applying robust optimization to portfolio selection in Chapter 6. While concentrating on the uncertainty caused by estimating expected returns of stocks, two robust formulations are shown with specific instructions provided as to their implementation.

Chapters 7, 8, and 9 analyze portfolio attributes that are revealed when portfolios are formed from robust portfolio optimization. In Chapter 7, we provide empirical evidence that indicates that some uncertainty sets lead to portfolios that favor skewness but penalize kurtosis. The high factor exposure of robust portfolios at the portfolio level is addressed in Chapter 8, and Chapter 9 examines portfolio weights allocated to individual stocks for comparing the composition of robust portfolios with mean-variance portfolios that assume no uncertainty. Chapter 10 illustrates the robustness of robust portfolios by observing their historical performance.

The final chapter, Chapter 11, discusses software packages that can help solve robust portfolio optimization and provides examples for finding robust portfolios.

1.2 USE OF MATLAB

Financial modeling often requires computer programs for solving complex computations. The use of powerful computing tools is inevitable in portfolio management because portfolio selection problems are mathematically expressed as optimization problems. Thus, tools that efficiently solve optimization problems give portfolio managers a great advantage; the tools are more valuable for robust portfolio management because approaches such as robust portfolio optimization involve more intense computations.

Therefore, in this book we discuss various aspects of robust portfolio management with examples on how to implement models in MATLAB, which is a programming language and interactive environment primarily for numerical computations. MATLAB is widely used in academic studies as well as research in the financial industry, especially for computations that involve matrices such as portfolio optimization. The examples presented use MATLAB mainly because the language provides a straightforward approach for executing portfolio optimization. This high-level language with an extensive list of built-in functions allows beginners to easily perform various computations and visualize their results. Furthermore, the syntax for writing a script or a function is so intuitive that the reader can quickly become familiar with MATLAB even without prior experience. Hence, the MATLAB examples throughout the book will not only supplement understanding the theoretical concepts but will also let the reader apply the examples to construct optimal portfolios that reflect their investment goals.

While MATLAB features an add-on toolbox for financial computations, the examples in this book use built-in functions for solving optimization and not the functions in the financial toolbox that are customized for certain types of financial decision problems. For example, the quadprog function in MATLAB is used for implementing portfolio problems that are formulated as quadratic programming. This gives the reader flexibility since the examples will show how the function parameters can be modified based on different investment assumptions and portfolio constraints. Becoming familiar with the built-in optimization functions is also crucial because robust formulations are not included in the financial toolbox and therefore must be solved with the optimization functions. We also include examples that use CVX, which is a modeling system for convex optimization that runs in the MATLAB environment.4 CVX enhances MATLAB, making it more expressive and powerful for solving optimizations like the mean-variance portfolio problems that are formulated as convex optimization problems. Many examples in this book present MATLAB codes that use the built-in functions of MATLAB as well as CVX in order to demonstrate two approaches for obtaining robust portfolios for a given problem. Since CVX is MATLAB-based, the reader will gain exposure to an additional tool without having to learn a new programming environment.

NOTES

- 1. Harry M. Markowitz, "Portfolio Selection," *Journal of Finance* 7, 1 (1952), pp. 77-91.
- 2. An example of improving the robustness of inputs is to use shrinkage estimators, introduced in Philippe Jorion, "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis 21, 3 (1986), pp. 279–292. Using simulation to gain robustness is illustrated in Richard Michaud and Robert Michaud, "Estimation Error and Portfolio Optimization: A Resampling Solution," Journal of Investment Management 6, 1 (2008), pp. 8–28. The Black-Litterman model is an equilibrium-based approach that incorporates an investor's views; it was proposed in Fischer Black and Robert Litterman, "Asset Allocation: Combining Investor Views with Market Equilibrium," Goldman, Sachs & Co., Fixed Income Research (1990). Various robust approaches including the ones mentioned here are detailed in Chapter 4.
- MATLAB documentations and a list of functions with examples are available at http://www.mathworks.com/products/matlab/
- 4. A CVX user's guide and download details can be found at http://cvxr.com/cvx/

Mean-Variance Portfolio Selection

Perfore we begin our discussion on robust portfolio management, we briefly review portfolio theory as formulated by Harry Markowitz in 1952. Portfolio theory explains how to construct portfolios based on the correlation of the mean, variance, and covariance of asset returns. The framework is commonly referred to as *mean-variance*. Despite its appearance more than half a century ago, it is also referred to as *modern portfolio theory*. The theory has been applied in asset management in two ways: The first is in allocating funds across major asset classes. The second application has been to the selection of securities within an asset class. Throughout this book, we apply mean-variance analysis to the construction of equity portfolios.

Mean-variance analysis not only provides a framework for selecting portfolios, it also explains how portfolio risk is reduced by diversifying a portfolio. Robust portfolio optimization builds on the idea of mean-variance optimization. Thus, the topics introduced in this chapter provide an introduction to the advanced robust methods to be explained in the chapters to follow. Specifically, in this chapter we describe how to:

- Measure return and risk of a portfolio within the mean-variance framework
- Reduce portfolio risk through diversification
- Select an optimal portfolio through mean-variance analysis
- Utilize factor models for estimating stock returns
- Apply the mean-variance model through an example

2.1 RETURN OF PORTFOLIOS

In modern portfolio theory, a portfolio that is composed of N assets is expressed as weights that add to one in order to represent the proportion of total investment allocated to each asset,

$$\omega_1 + \omega_2 + \dots + \omega_N = \sum_{i=1}^N \omega_i = 1$$