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Preface

The aim of this NATO ASI has been to present an up-to-date overview of current
areas of interest in amorphous materials, with particular emphasis on electronic
properties and device applications. In order to limit the material to a manageable amount,
the meeting was concerned almost exclusively with semiconducting materials. This
volume should be regarded as a follow-on to the NATO ASI held in Sozopol, Bulgaria in
1996 and published as "Amorphous Insulators and Semiconductors" edited by M.F.
Thorpe and M.I. Mitkova (Kluwer Academic Publishers, NATO ASI series, 3 High
Technology - Vol. 23). The lectures and seminars fill the gap between graduate courses
and research seminars. The lecturers and seminar speakers were chosen as experts in their
respective areas, and the lectures and seminars that were given are presented in this
volume. During the first week of the meeting, an emphasis was placed on introductory
lectures while the second week focused more on research seminars. There were two very
good poster sessions that generated a lot of discussion, but these are not reproduced in
this volume as the editors wanted to have only larger contributions to make the
proceedings more coherent.

This volume is organized into five sections, starting with some more unusual aspects
of structure than were covered in Sozopol. Section two deals with the very new area of
self-organization in glasses and how this relates to the rigidity of the glass. The next
section gives an overview of electronic states and transport phenomena. The fourth
section deals with an area of photoinduced cffects that has recently seen an increase in
interest due to possible device applications. Finally in section five, some properties
specific to amorphous silicon and amorphous carbon are covered.

This NATO ASI was held in the Iron Moutains in Sec in the Czech Republic. This
was the first NATO ASI held in Czech since it joined NATO earlier in 2000, and only
the fourth NATO ASI ever held in Czech. The meeting lasted for 10 working days with a
day off for a trip to Prague. Each day had either morning and evening sessions [with
afternoons free to visit the lake or wander in the hills around Sec] or morning and
afternoon sessions. On most of the free evenings, entertainment was provided which
included folk dancing and a disco.

Finally, we should like to thank the NATO Science Committee for providing
financial support for this meeting. We would like to thank Mykyta Chubynsky for his
help to make sure that the format of this book is as uniform as possible throughout. We
would especially like to thank Ms. Janet King for her invaluable assistance from the
planning through to the report stage of this meeting. Most of the participants
corresponded with her and got to know her well via e-mail. The efforts of Ms. Tana
Tonarova who helped considerably with the organization of the meeting on the Czech
side are also greatly appreciated.

M.F. Thorpe, East Lansing
L. Tichy, Pardubice

September 2000
Co-Directors Organizing Committee
M.F. Thorpe E. Cernoskova
L. Tichy S.R. Elliott
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THE STRUCTURE OF AMORPHOUS MATERIALS

S.R. ELLIOTT

Department of Chemistry
University of Cambridge
Lensfield Road
Cambridge CB2 1IEW
UK.

1. Introduction

Amorphous materials are condensed phases which do not possess the long-
range translational (or orientational) order — or periodicity — characteristic of
a crystal. The terms amorphous and non-crystalline are synonymous under
this definition. The term glassy has the same structural meaning, but in
addition it also usually implies that the material exhibits a ‘glass transition’
(evidenced by a discontinuous change in, for example, the heat capacity
from a liquid-like to crystal-like value at the transition on cooling a melt).
Although the presence of dynamic disorder in the case of liquids complicates
matters, the average atomic structure of liquids can be described in similar
ways to that of amorphous solids.

In this article, we will consider only topological disorder, viz. aperiodic
disorder in the atomic positions. Other types of disorder, associated with an
underlying crystalline lattice, are neglected, such as spin disorder (in spin
glasses), substitutional disorder (as in metallic alloys), and vibrational
disorder with respect to the equilibrium positions of a regular lattice.

The fact that an amorphous solid has no structural periodicity means that
the structure cannot be described in terms of a periodically-continued, finite-
sized unit cell. The structure of an amorphous solid could be described
(somewhat unhelpfully) in terms of an infinite unit cell, but in general a
statistical description is necessary. The quantity often used to describe the
structure of amorphous solids is the atomic-density function, o(r), or the
associated function, the radial distribution function (RDF), J(r), given by

J(r)=4mp(r). (L
1
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The quantity J(r)dr is the number of atoms in a spherical shell lying
between distances r and r + dr. Both o(r) and J(r) exhibit peaks at

distances corresponding to coordination shells from an origin atom, although
higher-lying peaks cannot be identified uniquely with a particular shell in
the case of amorphous solids, unlike for crystals. At larger distances, p(r)

apparently tends to a constant (unity, if normalized to the average density
Py as in Fig. 1) and J(r) tends to the average density parabola, 47’ p,

(see §2.3), indicative of a random structure (more precisely, the lack of
density fluctuations) beyond a certain distance. The peaks in p(r) or J(r)

for amorphous solids also become broader with increasing distance r from
an origin atom because of the cumulative effects of static disorder in bond
lengths and bond angles. In crystals, with only thermal (vibrational)
disorder, the peaks in the RDF are much narrower and do not damp out with
increasing distance. As a result, the structure of non-crystalline solids
cannot be determined unambiguously, a situation reinforced by the fact that
in many cases, at both microscopic and macroscopic levels, the structure of
such materials depends on details of the method of preparation and thermal
history.

Unlike the case of single crystals, where a single experimental
technique, diffraction, can be used to determine the positions of all atoms in
the finite unit cell, several complementary techniques need to be employed,
besides diffraction, in order to obtain as much structural information as
possible. These other techniques can include atom-specific structural probes
such as extended X-ray absorption fine-structure spectroscopy (EXAFS),
magic-angle spinning nuclear magnetic resonance (MASNMR) and related
NMR techniques, and vibrational spectroscopies (e.g. IR absorption and
Raman scattering).

The aim of this paper is to lay out a framework for the description of the
atomic structure of amorphous materials rather than give an exhaustive
survey of experimental results. The description will be illustrated with
examples chosen from different classes of amorphous solids, e.g. covalent,
ionic and metallic systems.

2. Structural order

In order to provide a description of the structure of amorphous solids, and
hence to provide an interpretation of the results of experimental techniques
used to probe the structure, it is convenient to consider the various types of
structural order that can exist in such materials at various length scales.
Such a categorization is convenient in two regards: the classification is
hierarchical, so that a particular type of order at one length scale can be
dictated by order at a smaller scale (but not necessarily the converse); the
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division is also pragmatic in that different structural probes are generally
sensitive to structural correlations at various length scales (Elliott 1991).

2.1 SHORT-RANGE ORDER

Short-range order (SRO), as its name implies, concerns structural order
involving the nearest-neighbour coordination shell. This is easiest to discuss
in the case of covalently-bonded amorphous solids since the presence of
their directed stereochemical bonds simplifies the description considerably.
For such materials, SRO is defined in terms of well-defined local (cation-
centred) coordination polyhedra, e.g. planar triangles (e.g. BO, triangles in
B,0,), pyramidal units (e.g. AsS, units in As,S)) and tetrahedra (e.g. SiO,
tetrahedra in SiO,, or SiSi, tetrahedra in Si).

The parameters which are sufficient to describe topological SRO in
stereochemical systems are the (coordination) number, N, of nearest
neighbours of type j around an origin atom of type i, the nearest-neighbour
bond length, R, the bond angle subtended at atom i, 8, (when the atom of
type k is different from j), and the corresponding quantities when atom j is
regarded as the origin, viz. N, and 6, The bond angle is found from the
first (nearest) neighbour distance r=R, and the second (next-nearest)
neighbour distance r,=R, (or R, ) by the relation:

6, =2sin"(r,/2r,) 2)

Note that in this definition of SRO, nothing is stated explicitly about the
detailed connectivity of the local coordination polyhedra (e.g. corner-, edge-
or face-sharing), except for the implicit information about the connectivity
contained in the coordination number N, of the linking anions at the apices of
the cation-centred coordination polyhedron. The connectivity of polyhedra
dictates the type and extent of medium-range order, as will be seen in §2.2.

Note also that the structural disorder characteristic of amorphous solids
can manifest itself in variations in these quantities, e.g. bond-length and
bond-angle fluctuations in the case of iono-covalent systems. This disorder
can be both thermal (vibrational), as in the case of crystals, and also static,
particularly in the case of bond angles, where variations of 10% are not
uncommon:

2 _ 2 2
O-am - O-rh + O-di: s (3)

where o is the mean-square fluctuation in atom-atom distances. Thus, a
statistical description is unavoidable, even at this spatial level of structural
order. The strong stereochemical bonding characteristic of such materials
ensures that the overall coordination number is maintained at all sites
(except for occasional coordination defects, e.g. ‘dangling’ bonds).



An additional parameter is required if the degree of chemical SRO needs
also to be described, e.g. in the case when different types of atoms constitute
the coordination polyhedron around a given origin atom (e.g. cation). Thus,
in nonstoichiometric compositions, for example, excess atoms can be
accommodated by the introduction of “wrong” (i.e. homopolar) bonds, and
the chemical order which might otherwise occur at the stoichiometric
composition (e.g. every As atom surrounded by three Se atoms, and every Se
by two As atoms in As,Se,) is thereby broken; the relevant parameter in this
case would be the proportion of wrong bonds. (Such considerations can also
apply even for stoichiometric compositions, since chemical ordering may
not exist even in that case when elements of comparable electronegativities
are involved.)

A related type of chemical order is when the different types of atomic
species in the coordination shell around a given origin atom are in fact the
same element but can have different charge states, bonding connectivity etc..
An example of this is the case of nonbridging anions (e.g. oxygen atoms)
introduced (in say silicate glasses) by the introduction of network-modifier
cations (e.g. alkali ions). Cation-centred polyhedra then can contain
different numbers of nonbridging and fully bridging anions. In the case of
silicate glasses, five possibilities exist, denoted as Q, (quaternary) species,
with n=0-4 being the number of bridging oxygen sites in a given SiO,
tetrahedron.  Nonstoichiometry in the oxygen composition is then
accommodated by changing the proportion of nonbridging oxygens (NBOs).
Q, speciation in silicate glasses can be determined experimentally by *Si
MASNMR.

The question of chemical ordering and its effect on SRO is most simply
addressed for the case of binary compositions of covalent systems, e.g. AB,
where if elements A and B are in columns a and b of the Periodic Table,
coordinations of 8-a and 8-b, respectively, will generally occur, thereby
satisfying their normal valence and the so-called “8-N" rule (strictly valid
only for groups IV-VII). Neglecting the effect of coordination defects (e.g.
dangling bonds), in general A-A, A-B and B-B bonds can coexist in a
compound of arbitrary composition; two models can describe the
distribution of such bond types (Lucovsky et al 1977).

In the random covalent network (RCN) model, the distribution of bond
types is treated as being purely statistical, determined only by the local
coordinations N,=8-a and N,=8-b and the concentration variable x. Any
effects leading to preferential ordering (e.g. arising from differences in bond
energies) are neglected. The RCN model admits all types of bonds, A-A, A-
B and B-B, at all compositions (except at x=0,1). In contrast, the chemically
ordered network (CON) model assumes that heteropolar (A-B) bonds are
favoured. A chemically ordered phase thus occurs at the stoichiometric
composition x, =N, /(N, + N,). Only A-A and A-B bonds are allowed for

A-rich compositions (1>x>x), and, conversely, only B-B and A-B bonds for
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O<x<x. The RCN and CON models are obviously most appropriate for
covalent systems where coordination numbers are well defined as a result of
the pronounced stereochemical bonding.

The above description of SRO in terms of well-defined coordination
polyhedra is obviously inappropriate for those systems in which the bonding
is nondirectional, e.g. metallic, van der Waals-bonded and ionic systems, in
which the structure can be regarded simply as a random packing of spheres.
In such cases, well-defined single types of coordination polyhedra do not
exist and large site-to-site variations in the nearest-neighbour coordination
number can occur. SRO in such systems can therefore only be characterized
by statistical means in terms of suitable average quantities, e.g. the order
parameter defined as (Sadoc and Wagner 1983):

N12
- )
x, (6, N, + x,N,)

a=1

2 . . . . . .
where N, =E,-=1 N . Negative values of « indicate chemical ordering, i.e.

the occurrence of unlike nearest neighbours. The average nearest-neighbour
coordination of systems with centro-symmetric bonding is also much higher
(N,;~12-13) than that characteristic of covalent systems (N;~2-4). The
nearest-neighbour coordination number of a particular atom in such densely
packed amorphous solids can be found by construction of the Voronoi
polyhedron (or Wigner-Seitz cell), which is the smallest convex polyhedron
formed by planes which bisect perpendicularly the vectors from the origin
atom to its nearest-neighbours: the number of faces of the Voronoi
polyhedron gives the coordination number.

2.2 MEDIUM-RANGE ORDER

Medium-range order (MRO) is less easy to define (and to measure
unambiguously) than SRO. Perhaps the clearest description is in terms of an
hierarchical definition. MRO can be regarded as constituting the next higher
level of structural organization beyond that of SRO, existing on a length
scale of, say, 5-10A. Since SRO is defined by 2-body (r,, N,) and 3-body (6)
correlation functions, MRO can be associated with yet higher-order
correlation functions (for the case of iono-covalent network materials, where
covalent bonds can be defined). It is convenient further to divide the types
of MRO into three categories, corresponding to progressively increasing
length scales.

2.2.1 Short-range MRO

If SRO can be defined in terms of well-defined local coordination polyhedra,
short-range MRO is concerned with the type of connection of such
polyhedra, as well as their relative orientation. Thus, corner-, edge- and
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face-sharing of polyhedra lead to very different ordering schemes at a local
scale, as well as to pronounced differences at larger distances in terms of
network dimensionality (§2.2.3).

In an hierarchical sense, short-range MRO can be quantified in terms of
a 4-body correlation function, involving the positions of atoms A, B, C, D,
namely the dihedral angle, @, which is the angle of twist about a common
bond (AB) between two coordination polyhedra, necessary to bring into
coincidence the projections onto the plane normal to AB of two outlying
bond vectors (e.g. AC, BD). In fact, it is disorder in the dihedral angle that
destroys the translational periodicity characteristic of crystals. The
distribution of dihedral angles, P(¢), for crystals consists of a single delta
function (or a discrete set): e.g. ¢=60° for all bonds in the diamond-cubic,
tetrahedrally-coordinated structure (e.g. c-Si, Ge). It is this regularity in the
relative positions of four connected atoms that generates the periodicity. A
disordered structure in which there is a random distribution of dihedral
angles connecting coordination polyhedra, P(¢)=constant, the most
disordered network structure envisageable, is known as the Zachariasen
continuous random network (CRN). However, it is not clear whether such a
true CRN would be dense at all length scales, as a result of ring formation,
or whether it would form a Cayley tree (or Bethe lattice), a continuously
branching structure, whose density decreases with distance from the core. In
practice, actual structural models of covalent amorphous solids that agree
well with experimental diffraction data, say, and hence presumably real
amorphous materials, invariably have broad, but not flat, dihedral-angle
distributions.

Departures from a uniform (i.e. random) distribution P(¢) are

correspondingly a hallmark of short-range MRO. Favoured values ¢ are
associated with features of MRO such as (small) rings.

2.2.2. Intermediate-range MRO

In an hierarchical description, intermediate-range MRO is determined by 5-
body (and perhaps higher) atomic correlation functions, that is, correlations
between values of dihedral angles defined for adjacent bonds. A common
example of such a correlation is if the magnitude of the dihedral angle is
constant, or has the same average value, for every bond, but the sign of ¢
(i.e. the sense of angular rotation) is correlated between adjacent bonds. If
the sign is everywhere the same, e.g. ++++..., then ring formation is
favoured. If, on the other hand, the sign alternates, +-+-..., chain formation
is favoured instead. Thus, very different types of structural organization can
result from different types of 5-body atomic correlation function. An
example is Se. Crystalline polymorphs contain either rings or chains with
¢~102°; a-Se can contain rings and chains (with alternate or random signs of
¢ down the chain).
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Correlations between successive dihedral angles can also lead to another
aspect of intermediate-range MRO, namely superstructural units comprising
several basic SRO coordination polyhedra connected together. Such
superstructural units, e.g. rings or clusters of atoms of particular shapes or
sizes, occur in a considerably higher proportion than would be expected on a
purely statistical (random) basis. One example of a superstructural unit is
the case of the boroxol (B,O,) ring in vitreous B,O,, the symmetric breathing
vibrational mode of which gives rise to an extremely intense, and narrow,
peak in the Raman spectrum. Another example is the case of molecular
clusters found in amorphous chalcogenides, e.g. the approximately spherical
AsSe, and As,Se, molecules found particularly in thermally-evaporated
amorphous thin films of AsSe, and AsSe, repectively. These again are
revealed in Raman spectra as sharp molecular lines, rather than the broader
featureless Raman bands characteristic of fully cross-linked network
chalcogenide glasses, e.g. As,Se,.

2.2.3. Long-range MRO

On a yet larger length scale, say greater than 104, the structural organization
characteristic of long-range MRO can be associated with the local
dimensionality of a covalently bonded amorphous network, or perhaps the
existence of domains in glassy metallic alloys.

Structural ordering associated with a local dimensionality different from
three (spatical isotropy) can arise in a covalent network due to two causes:
either the type of connection between coordination polyhedra may impose
such a reduced dimensionality, or it may result from network
depolymerization due to the introduction of network modifiers. In either
case, the local topology of the network structure is traced out by a process of
bond percolation along the strong covalent bonds, neglecting the weaker van
der Waals or ionic bonds that serve to hold the structure together in the case
of low-dimensional systems or network-modified materials, respectively.
Thus, OD (cluster-like), 1D (chain-like) and 2D (layer-like) local
dimensionalities can be distinguished. Examples of all three types of long-
range structural ordering are afforded by chalcogenide glasses. Thus, for
example P .Se, (or As Se, etc.) is an example of a superstructural cluster unit
forming a OD structure; complete edge-sharing of SiSe, tetrahedra in glassy
SiSe, generates infinite chains, i.e. a 1D structure; edge- and corner- sharing
of GeSe, tetrahedra in glassy GeSe, leads to a locally 2D structure; in
contrast, complete corner-sharing of SiO, tetrahedra in glassy Si0, yields a
structurally-uniform 3D structure, i.e. one devoid of long-range medium-
range ordering in the dimensional sense.

Network-modifying cations (e.g. alkalis) introduced non-randomly into
a network-forming material (e.g. Si0,) can enter the structure in either a
filamentary or a sheet-like fashion, thereby partitioning the unmodified
(oxide) network and lowering its local dimensionality.  Alternatively,
attention can be focussed on the ionically bonded regions incorporating the
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network-modifying cations and non-bridging anions, and the local
dimensionality of such regions can be ascertained by tracing out the
connected spatial profiles of such ionic species.

It has been assumed that structural ordering in amorphous materials at
intermediate length scales is a consequence, in an hierarchical sense, of a
well-defined SRO. In the case of amorphous materials in which non-
directional bonding is predominant, e.g. metallic alloys, the constraints
imposed by the stereochemical bonding characteristic of iono-convalent
systems on the generation of SRO no longer apply, yet in certain cases (e.g.
transition-metal metalloid (TMM) alloy glasses), a well-defined topological
and chemical SRO exists (in the form of trigonal prismatic coordination of
transition-metal atoms around metalloid atoms). In such cases, it may be
that the SRO itself is a consequence of the existence of a certain type of
well-defined MRO, i.e. the converse of the situation for covalent systems.
An example of this in the crystalline state is the occurrence of tetrahedral
and octahedral sites (holes) arising between ordered close-packed arrays of
atoms. In the case of crystalline TMM alloys, the trigonal prismatic
coordination around metalloid atoms can be regarded as arising from the
existence of "chemical twinning’ planes, containing metalloid atoms, within
close-packed crystalline arrangements of the metal atoms. Dubois et al
(1985) have proposed that similar considerations also apply to the structure
of glassy TMM alloys, in which the long-range MRO is associated with
domains of size 10-20A, within each of which are more-or-less ordered
arrays of chemical twinning planes, within which are located the trigonal
prismatic SRO units.

2.3 EXTENDED-RANGE ORDER

It has been widely believed that there is no structural order in amorphous
materials at a length scale say greater than 10A from any given atom as
origin. In other words, there should be no atomic-density fluctuations in this
spatial range, and consequently the atomic-density correlation function,
p(r), or the RDF, J(r), should be featureless after this distance. Indeed,

RDFs obtained by Fourier transformation of experimentally obtained
diffraction data, i.e. the structure factor S(Q), generally do appear to be
featureless relative to the noise level beyond say 10A. However, recent
improvements in computing power have meant that very large structural
models of amorphous solids can now be constructed, containing several tens
of thousands of atoms in box sizes of order 100A on a side, meaning that the
RDFs of such model structures can be calculated out to distances of say 50 A
or so. Two large-scale structural models, one of a-Si and one of a
monatomic amorphous metal, have been analyzed and both reveal evidence
for extended-range order (ERO), i.e. non-random density fluctuations
extending to about 15 times the nearest-neighbour separation in both cases.
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The pair distribution function for a 13824-atom model of a-Si reveals
(Uhlherr and Elliott 1994) that pseudo-periodic density fluctuations persist
to a distance of order 35 A (cf. the nearest-neighbour bond length,
r=2.38 A). The approximate period of these fluctuations is D=3.4 A. This
pseudo-period is the same as that between even-even or odd-odd peaks in the
neighbour-specific pair-distribution function, g, (). A projection of atoms in
a slice of the model, coloured depending on whether they are odd or even
neighbours, respectively, of an origin atom at the centre reveals a concentric
circular pattern being a 2D cut through the spherical shell-like pattern of
extended-range atomic-density fluctuations, with pseudo-period 3.4 A,
around any atom taken as origin. (The g(r) curve is a 1D cut through the
spherical shells.) The origin of the ERO is believed to arise from the
structural frustration encountered in constructing a fully dense amorphous
network, with no unsatisfied (dangling) bonds, from highly (tetrahedrally)
coordinated structural units. In order to maximise the local density, atomic
packing similar to that of the highest density crystalline lattice planes, i.e.
the {111} planes of the diamond-cubic structure, will tend to occur. On
average, along any line connecting an origin atom and another atom, at a
sufficiently large distance, say beyond 10 A where MRO non-periodic
density fluctuations have damped out, {111}-like atomic packing will be
seen. The apex-to-basal plane distance in an SiSi, tetrahedron (the {111}
interplanar distance) is d,,=3.3 A, to which the pseudo -period D tends at
large distances.

The occurrence of ERO in a-Si can also be understood in terms of
propagated SRO. A three-body (conditional) probability function shows this
behaviour. Consider an origin atom O and another atom i located at a fixed
distance r, (+/— dr) from it. In this case, one would expect a positive
contribution (peak) in the pair distribution function, g(r), at r=r. The point
at issue is, given two atoms at O and r, what is the probability of finding a
third atom, j, which is a An”® neighbour of i, at a distance & from i along the
vector connecting O and i on the far side of i from O? This probability,
P4, (6), has been calculated (for r,.=14A) (Uhlherr and Elliott 1994). The

highest, narrowest peak is for An=2 lying at 8=3.4A. Thus any peak (or
trough) in g(r) will be propagated with a pseudo-period of D~3.4A. The fact
that the dominant contribution to P, (0) is for An=2 accounts for the fact

that the pseudo-period of the density fluctuations observed in g(r)
correspond to the separation of every other peak in the neighbour-specific
distribution, g (r).

Similar ERO behaviour has been found in a very different noncrystalline
system, a monatomic random packing of equally-sized spherical atoms
interacting via an interatomic potential which favours icosahedral local
packmg (Dzugutov (1992)). This structural model, containing 16,000 atoms,
is contained within a cubic box of 50 reduced units (r.u.) on a side; the
average nearest-neighbour distance is 1.15 ru.. The pair distribution
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function, g(r), appears to become random at a distance of ~17 r.u.. This
ERO behaviour has been confirmed by a wavelet analysis (Harrop et al

2000) using a 1D version of the Gabor wavelet, w(r) = Csin(sr)expl- r’ / 2)

as the mother wavelet. Details of the analysis are given elsewhere (Harrop
et al 2000), but the results show that the extent of ERO oscillations is indeed
~17 r.u., and that the magnitude of the wavelet components (that is the
amplitude of the ERO oscillations) decreases exponentially with distance in
this spatial range. The same exponential decay is also found for the same
system in the liquid state, except that the spatial decay rate for it is more
rapid and hence the range of ERO oscillations, before the onset of noise, is
curtailed.

It is of interest to examine the behaviour of the spatial extent of the
magnitude of the wavelet components for two related crystalline structures,
namely the body-centred cubic (bcc) structure and the o-phase, a Frank-
Kaspar structure, containing a large unit cell (4 r.u. in the largest dimension)
which consists of a tetrahedral packing with local icosahedral order. Both
crystals, of course, exhibit long-range order in that the magnitude of the
wavelet components does not decay at large distances. However, the o©-
phase, with an appreciably disordered large unit cell, does exhibit a spatial
decay of the magnitude for distances up to ~8 r.u. (i.e. two unit cells).
Furthermore, it is perhaps significant that the spatial decay rate appears to be
the same for the o-phase and the (solid) amorphous phase.

Finally, the period of the ERO oscillations for the glassy model, taken
either directly from the g(r) function or obtained from the wavelet analysis,
namely D=0.934 r.u.,, is the same as the modal average (i.e. peak-maximum
position) of the distribution of apex-basal heights of local tetrahedra in the
structure, i.e. R =0.935 r.u.. This distribution is appreciably broader than,
but is centred around the same average apex-basal distance of, the
distribution in the case of the o-phase. Thus, the ERO in this dense-packed
amorphous system is also associated with packing constraints, in this case
also of tetrahedra.

3. Conclusions

Structural order in glasses can be defined, in an hierarchical sense, at
increasing length scales in terms of ever-increasing n-body correlation
functions. Short-range order is associated with the first coordination shell
(ie. 2- and 3- body correlation functions, viz. bond-length and angle
distributions, respectively). Medium-range order at the shortest length scale
is associated with 4-body correlation functions (i.e. dihedral-angle
distributions), and at the next largest scale with correlations between
adjacent dihedral angles. We have also found pseudo-periodic atomic-
density fluctuations (extended-range order) in large models of a-Si and a
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monatomic metallic system with pronounced local icosahedral ordering.
This ERO is due to structural frustrations associated with packing
constraints, in this case of tetrahedral units.
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