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Preface

The aim of this second revision (third edition) of the Society’s successful Principles
of Naval Architecture was to bring the subject matter up-to-date through revising
or rewriting areas of greatest recent technical advances, which meant that some
chapters would require many more changes than others. The basic objective of the
book, however, remained unchanged: to provide a timely survey of the basic prin-
ciples in the field of naval architecture for the use of both students and active
professionals, making clear that research and engineering are continuing in almost
all branches-6f the subject. References to available sources of additional details
and to ongoing work to be followed in the future are included.

The preparation of this third edition was simplified by an earlier decision to
incorporate a number of sections into the companion SNAME publication, Ship
Design and Construction, which was revised in 1980. The topics of Load Lines,
Tonnage Admeasurement and Launching seemed to be more appropriate for the
latter book, and so Chapters V, VI, and XI became IV, V and XVII respectively,
in Ship Design and Construction. This left eight chapters, instead of 11, for the
revised Principles of Naval Architecture, which has since become nine in three
volumes.

At the outset of work on the revision, the Control Committee decided that the
increasing importance of high-speed computers demanded that their use be dis-
cussed in the individual chapters instead of in a separate appendix as before. It
was also decided that throughout the book more attention should be given to the
rapidly developing advanced marine vehicles.

In regard to units of measure, it was decided that the basic policy would be to
use the International System of Units (S.I.).” Since this is a transition period,
conventional U.S. (or “English”) units would be given in parentheses, where prac-
tical, throughout the book. This follows the practice adopted for the. Society’s
companion volume, Ship Design and Construction. The U.S. Metric Conveérsion Act
of 1975 (P.L. 94-168) declared a national policy of increasing the use of metric
systems of measurement and established the U.S. Metric Board to coordinate
voluntary conversion to S.I. The Maritime Administration, assisted by a SNAME
ad hoc task group, developed a Metric Practice Guide to “help obtain uniform
metric practice in the marine industry,” and this guide was used here as a basic
reference. Following this guide, ship displacement in metric tons (1000 kg) rep-
resents mass rather than weight. (In this book the familiar symbol, A, is reserved
for the displacement mass). When forces are considered, the corresponding unit is
the kilonewton (kN), which applies, for example, to resistance and to displacement
weight (symbol W, where W = pAg) or to buoyancy forces. When conventional or
English units are used, displacement weight is in the familiar long ton unit

(Continued)
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(2240 1b), which numerically is 1.015 X metric ton. Power is usually in kilowatts
(1 kW = 1.34 hp). A conversion table also is included in the Nomenclature at the
end of each volume

The first volume of the third edition of Principles of Naval Architecture, com-
prising Chapters I through IV, deals with the essentially static principles of naval
architecture, leaving dynamic aspects to the remaining volumes. The second vol-
ume consists of Chapters V Resistance, VI Propulsion and VII Vibration, each of
which has been extensively revised or rewritten.

Volume III contains the two final chapters, VIII Motions in Waves and IX
Controllability. Because of important recent theoretical and experimental devel-
opments in these fields, it was necessary to rewrite most of both chapters and to
add much new material. But the state-of-the-art continues to advance, and so
extensive references to continuing work are included.

November 1989 Edward V. Lewis
Editor
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CHAPTER VIII

Motions in Waves

Section 1
Introduction’

1.1 Ship motions at sea have always been a problem
for the naval architect. His or her responsibility has
been to insure not only that the ship can safely ride
out the roughest storms but that it can proceed on
course under severe conditions with a minimum of
delay, or carry out other specific missions successfully.
However, the problem has changed through the years.
Sailing vessels followed the prevailing winds—Colum-
bus sailed west on the northeast trades and rode the
prevailing westerlies farther north on his return voy-
ages. The early clipper ships and the later grain racers
from Australia to Kurope made wide detours to take
advantage of the trade winds. In so doing they made
good time in spite of the extra distance travelled, but
the important fact for the present purpose is that they
seldom encountered head seas.

With the advent of steam, for the first time in the
history of navigation, ships were able to move directly
to windward. Hence, shipping water in heavy weather
caused damage to superstructures, deck fittings and
hatches to increase, and structural bottom damage
near the bow appeared as a result of slamming. Struc-
tural improvements and easing of bottom lines for-
ward relieved the latter situation, and for many years
moderately powered cargo ships could use full engine
power in almost any weather, even though speed was
reduced by wind and sea. The same is true even today
for giant, comparatively low-powered tankers and
many dry-bulk carriers.

For many years the pilot charts issued by the U.S.
Navy Oceanographic Office still showed special routes
for “low-powered steamers” to avoid head winds and
seas. It should be emphasized that the routes shown
for the North Atlantic, for example, did not involve
avoiding bad weather as such, for eastbound the routes
for low and high-powered steamers were the same; but
they did attempt to avoid the prevailing head winds

'This section written by the editor.

and head seas westbound that greatly reduced the
speed of low-powered ships.

The situation is different for today’s modern fast
passenger vessels and high-powered cargo ships. In
really rough head seas, their available power is ex-
cessive and must be reduced voluntarily to avoid ship-
ping of water forward or incurring structural damage
to the bottom from slamming. Hence, maintaining
schedule now depends as much on ship motions as on
available power.

Similarly, high-powered naval vessels must often
slow down in rough seas in order to reduce the motions
that affect the performance of their particular mission
or function—such as sonar search, landing of aircraft
or helicopters and convoy escort duty. Furthermore,
new and unusual high-performance craft—compara-
tively small in size—have appeared whose perform-
ance is even more drastically affected by ocean waves.
These include high-speed planing craft, hydrofoil
boats, catamarans and surface effect ships, most but
not all being developed or considered for military uses.

A very different but related set of problems has
arisen in the development of large floating structures
and platforms that must be towed long distances and
be accurately positioned in stormy seas for ocean-drill-
ing and other purposes.

As seakeeping problems have thus became more se-
rious, particularly for the design of higher-speed
oceangoing vessels, rapid expansion began in the mid-
1950s in the application of hydrodynamic theory, use
of experimental model techniques and collection of full-
scale empirical data. These important developments led
to a better understanding of the problems and ways
of dealing with them. Along with remarkable advances
in oceanography and computer technology, they made
it possible to predict in statistical terms many aspects
of ship performance at sea. Furthermore, they could
be applied to the seagoing problems involved in the
design of the unusual new high-speed craft and float-
ing platforms previously mentioned.



In view of the increasing importance of theoretical
approaches to seakeeping problems, it is felt to be
essential to cover in this chapter in a general way the
basic hydrodynamic principles and mathematical tech-
niques involved in predicting ship motions in both reg-
ular and irregular seas (Sections 2, 3 and 4). Some
readers may wish to proceed directly to Sections 5-8,
which discuss more practical aspects of ship motions
and the problems of design for good seakeeping per-
formance.

The understanding of ship motions at sea, and the
ability to predict the behavior of any ship or marine
structure in the design stage, begins with the study
of the nature of the ocean waves that constitute the
environment of the seagoing vessel. The outstanding
characteristic of the open ocean is its irregularity, not
only when storm winds are blowing but even under
relatively calm conditions. Oceanographers have found
that irregular seas can be described by statistical
mathematics on the basis of the assumption that a
large number of regular waves having different
lengths, directions, and amplitudes are linearly super-
imposed. This powerful concept is discussed in Section
2 of this chapter, but it is important to understand
that the characteristics of idealized regular waves,
found in reality only in the laboratory, are also fun-
damental for the description and understanding of re-
alistic irregular seas.

Consequently, in Section 2—after a brief discussion
of the origin and propagation of ocean waves—the
theory of regular gravity waves of simple form is
presented. Mathematical models describing the com-
plex irregular patterns actually observed at sea and
encountered by a moving ship are then discussed in
some detail. The essential feature of these models is
the concept of a spectrum, defining the distribution
of energy among the different hypothetical regular
components having various frequencies (wave
lengths) and directions. It is shown that various sta-
tistical characteristics of any seaway can be deter-
mined from such spectra. Sources of data on wave
characteristics and spectra for various oceans of the
world are presented.

It has been found that the irregular motions of a
ship in a seaway can be described as the linear super-
position of the responses of the ship to all the wave
components of such a seaway. This principle of su-
perposition, which was first applied to ships by St.
Denis and Pierson (1953),” requires knowledge of both
the sea components and the ship responses to them.

Hence, the vitally important linear theory of ship
motions in simple, regular waves is next developed in
Section 3. It begins with the simple case of pitch, heave
and surge in head seas and then goes on to the general
case of six degrees of freedom. The equations of mo-

*Complete references are listed at end of chapter.
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tion are presented and the hydrodynamic forces eval-
uated on the basis of potential theory. The use of strip
theory is then described as a convenient way to per-
form the integration for a slender body such as a ship.

Finally, practical data and experimental results for
two cases are presented: the longitudinal motions of
pitch-heave-surge alone, and the transverse motions
of roll-sway-yaw.

In Section 4 the extension of the problem of ship
motions to realistic irregular seas is considered in de-
tail, the object being to show how modern techniques
make it possible to prediet motions of almost any type
of craft or floating structure in any seaway in prob-
ability terms. It is shown that, knowing the wave spec-
trum and the characteristic response of a ship to the
component waves of the irregular sea, a response spec-
trum can be determined. From it various statistical
parameters of response can be obtained, just as wave
characteristics are obtainable from wave spectra. Re-
sponses to long-crested seas are treated first, and then
the more general case of short-crested seas. Particular
attention is given to the short-term statistics of peaks,
or maxima, of responses such as pitch, heave and roll;
both motions and accelerations. Examples of typical
calculations are included.

Section 5 considers the prediction of responses other
than the simple motions of pitch, heave, roll, etc. These
so-called derived respomses include first the vertical
motion (and velocity and acceleration) of any point in
a ship as the result of the combined effect of all six
modes, or degrees of freedom.

Consideration is given next to the relative motion of
points in the ship and the water surface, which leads
to methods of calculating probabilities of shipping
water on deck, bow emergence and slamming. Non-
linear effects come in here and are discussed, along
with non-linear responses such as added resistance and
power in waves. Finally, various wave-induced loads
on a ship’s hull structure are considered, some of which
also involve non-linear effects.

Section 6 discusses the control of ship motions by
means of various devices. Passive devices that do not
require power or controls comprise bilge keels, anti-
rolling tanks and moving weights. Five performance
criteria for such devices are presented, and the influ-
ence of each is shown by calculations for a ship rolling
in beam seas. Active devices, such as gyroscopes, con-
trollable fins and controlled rudders are then dis-
cussed.

Section 7 deals with criteria and indexes of sea-
keeping performance. It is recognized that, in order
for new designs to be evaluated and their acceptability
determined, it is essential to establish standards of
performance, just as in other chapters where criteria
of stability, subdivision and strength are presented.

Various desirable features of ship behavior have
been listed from time to time under the heading of
seakindliness. These include easy motions, (i.e., low
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accelerations), dry decks, absence of slamming and
propeller racing, and easy steering. For naval ships
important additional considerations include weapon
system performance, landing of helicopters and sonar
search effectiveness. This section considers in detail
specific criteria by which to judge whether or not a
ship can carry out a particular mission in a given sea
condition, speed and heading. These criteria usually
involve values of motion amplitude, velocity or accel-
eration at specific locations in the ship, or motions
relative to the sea affecting shipping of water and
slamming. Available prescribed values of acceptable
performance are tabulated for different types of craft
and various missions.

However, whether or not a ship can meet any of the
criteria depends on factors such as sea condition, speed
and heading. Therefore, a Seakeeping Performance
Index (SPI) is needed that takes account of all the
different sea conditions expected over a period of time
and the speeds and headings attainable in each. It
should measure the effectiveness of a ship in attaining
its mission or missions in service. Two basic SPIs are
described: A Transit Speed SPI and a Mission Effec-
tiveness SPI. The first applies particularly to merchant
ships whose mission is to deliver cargo and passengers
safely and promptly, and is expressed as attainable
average speed over one or more voyages without ex-
ceeding the applicable criteria. This SPI also applies
to some functions of naval ships. The second SPI, Mis-
sion Effectiveness, applies particularly to naval ves-
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sels, but also to Coast Guard cutters, fishing vessels
on fishing grounds, oceanographic ships and floating
platforms. For such ships the SPI defines the effec-
tiveness of the ship in fulfilling specific missions or
functions, usually in terms of the fraction of time that
the ship ean do so over a stated period. Methods of
calculating these SPIs are given, along with specific
examples.

Finally, having criteria and indexes of performance
whereby predictions can be tested, the naval architect
requires guidance as to choice of ship form, propor-
tions, natural periods of rolling and pitching, freeboard
forward and other characteristics favorable to good
seagoing performance. In Section 8 the theoretical
principles and experimental data developed in preced-
ing sections are applied to providing such needed
guidelines. Emphasis is on choosing the overall ship
proportions and coefficients, since they must be estab-
lished early in the design process and are shown to
have more influence on performance than minor
changes in full form. Consideration is also given to
above-water form and freeboard, and to added power
requirements in waves. Special design problems of
high-performance craft are discussed.

Consideration is also given to design procedures that
permit seakeeping considerations to be taken into ac-
count from the outset. It is shown that a choice among
alternative designs can be made on the basis of eco-
nomic considerations, for both commercial and naval
vessels.

Section 2
Ocean Waves®

2.1 Origin and Propagation of Ocean Waves. As
noted in Section 1, the outstanding visible character-
istic of waves in the open ocean is their irregularity.
Study of wave records confirms this irregularity of the
‘sea, both in time and space. However, one is equally
impressed by the fact that over a fairly wide area and
often for a period of a half-hour or more the sea may
maintain a characteristic appearance, because record
analyses indicate it is very nearly statistically steady
or stationary. At other times or places the sea con-
dition will be quite different, and yet there will again
be a characteristic appearance, with different but
steady statistical parameters. Hence, for most prob-
lems of behavior of ships and floating structures at
sea, attention can be focused on describing mathe-
matically the surface waves as a random, or stochastic,
process under short-term statistically stationary con-
ditions. Analysis of wave records has also shown that

4By William E. Cummins, with paragraphs by John F. Dalzell.

under such conditions they are approximately Gaus-
sian in character, i.e., wave elevations read at random
or at regular intervals of time have roughly a Gaus-
sian, or normal, probability density function. This char-
acteristic greatly simplifies the application of statistics,
probability theory and Fourier analysis techniques to
the development of suitable models.

The theory of seakeeping uses such mathematical
models of ocean waves, which account for variability
of waves in time and space, so long as conditions re-
main steady, permitting estimates of short-term ship
performance for realistic environmental conditions
over a relatively small area. These theories are based
upon mathematical wave theory as well as on the laws
of probability and statistics. The details of one model,
particularly as they concern the naval architect, will
be developed in this section.

However, for an overall understanding, as well as
for solving some seakeeping problems, the variation
in waves over long periods of time and over great
distances cannot be overlooked. It is useful, therefore,
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to review the physical processes of storm wave gen-
eration and of wave propagation in a general way.

Storm waves are generated by the interaction of
wind and the water surface. There are at least two
physical processes involved, these being the friction
between air and water and the local pressure fields
associated with the wind blowing over the wave sur-
face. Although a great deal of work has been done on
the theory of wave generation by wind, as summarized
by Korvin-Kroukovsky (1961) and Ursell (1956), no
completely satisfactory mechanism has yet been de-
vised to explain the transfer of energy from wind to
sea. Nevertheless, it seems reasonable to assume that
the total storm wave system is the result of many local
interactions distributed over space and time. These
events can be expected to be independent unless they
are very close in both space and time. Each event will
add a small local disturbance to the existing wave
system.

Within the storm area, there will be wave interac-
tions and wave-breaking processes that will affect and
limit the growth and propagation of waves from the
many local disturbances. Nevertheless, wave studies
show that if wave amplitudes are small the principle
of linear superposition governs the propagation and
dispersion of the wave systems outside the generating
area. Specifically, if {,(x, y, £) and {2, y, t) are two
wave systems, {,(2, y, t) + {2, y, ) is also a wave
system. This implies that one wave system can move
through another wave system without modification.
While this statement is not absolutely true, it is very
nearly so, except when the sum is steep enough for
wave breaking to occur.

A second important characteristic of water waves
that affects the propagation of wave systems is that
in deep water the phase velocity, or celerity, of a sim-
ple regular wave, such as can be generated in an ex-
perimental tank, is a function of wavelength. Longer
waves travel faster than shorter waves. Study and
analysis of ocean wave records has shown that any
local system can be resolved into a sum of component
regular waves of various lengths and directions, using
Fourier Integral techniques. By an extension of the
principle of superposition, the subsequent behavior of
the sum of these component regular wave systems will
determine the visible system of waves. Since these
component waves have different celerities and direc-
tions, the propagating pattern will slowly change with
time.

If the propagating wave system over a short period
of time is the sum of a very large number of separate
random contributions, all essentially independent, the
surface elevation is

Uz, g t) = 2 Ll o, 1) (1)

and the laws of statistics yield some very useful con-
clusions. Since water is incompressible, the average

value of vertical displacement at any instant, ¢, in a
regular component wave, {;, is zero (if it is assumed
to be of sinusoidal form, as discussed subsequently),
and therefore the average value for the wave system,
{Ux, y, t)), is also zero. However, the variance (or
mean square deviation from the mean) of {;, which is
the average value of {? written ({?), is a positive
quantity that measures the severity of the sea. A fun-
damental theorem of statistics states that the variance
of the sum of a set of independent random variables
tends asymptotically to the sum of the variances of
the component variables. Thus, for a very large (infi-
nite) number of components, assumed to be indepen-
dent,

({3 = X {3 2)

A final statistical conclusion is a consequence of the
central limit theorem of statistics. In the case under
discussion, this theorem implies that {(z, y, t) will have
a normal (or Gaussian) density function, even if the
component variables {(x, y, t) are not distributed nor-
mally. The importance of this result is that the density
function of a normal random variable is known if its
mean and variance are known. Therefore, if the vari-
ance of the surface elevation in the multi-component
wave system can be estimated, its probability density
as a random variable is known. Ochi (1986) deals with
the analysis of non-Gaussian random processes.

These conclusions from the laws of statistics all de-
pend upon the previously mentioned principle of su-
perposition, which holds approximately but not
absolutely for water waves, and on the assumption of
independence of component waves. Therefore, the con-
clusions themselves are approximate and this should
be remembered. However, it has been found that over
the short term, deviations become significant only
when the waves are very steep, and even then pri-
marily in those characteristics that are strongly influ-
enced by the crests.

It will be shown that the short-term descriptive
model that has been described leads to a mathematical
technique for describing the irregular sea at a given
location and time, while conditions remain steady or
stationary. Each sea condition can for short periods
of time be as unique as a fingerprint, and yet, as with
a fingerprint, it has order and pattern, as defined by
its directional spectrum, to be explained subsequently
(Section 2.6). However, since the wind velocities and
directions are continually, albeit slowly, changing, the
short-term mathematical description will also change.
Hence, a broader model is also needed to cover large
variations in time, involving wind effects on growth
and decline of local wave systems, as well as propa-
gation and dispersion.

Fig. 1(a) symbolizes a storm-wave generation area.
It may be assumed that disturbances are being gen-
erated by the interaction of the wind and sea surface
throughout the storm area from the time the wind
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Fig. 1 Ocean wave generation and propagation

starts to blow over the region. Fig. 1(b) shows the
effect at an observation point (z, 7, ¢) of a disturbance
at (x;, ¥, t;). Since a specific disturbance creates a dis-
persive wave system originating with a local interac-
tion between wind and sea, it has the form of radiating
waves spreading from the point (#;, ¥;). At any distant
observation point it will appear to be a system of locally
long-crested waves progressing from the direction of
the point of origin. The original action (e.g., an im-
pulsive displacement) is assumed to generate a band
of frequencies, each corresponding to a different band
of wavelengths. As different wavelengths advance at
different celerities, the longest waves will reach the
observation point first, and the observed average wave-
length will decrease with increasing time, (¢ — ¢;). The
total wave displacement, £, at the observation point is

the sum of effects due all disturbances in the gener-
ation area that are upwind of a line through the ob-
servation point perpendicular to the wind direction.
Because of angular dispersion, or spreading, the many
wave systems will come from different directions, and
the combined system will generally show short-crest-
edness.

If there is a boundary to windward of the generation
area, a shore or the edge of the storm, the total wave
systems at a series of observation points will differ in
character as the points approach the boundary, as
there will be fewer disturbances propagating over the
observation point. This distance from the observation
point to the boundary is called the fetch. Also, if the
waves are observed at a fixed point, starting with the
inception of the wind, the wave system will grow with
time. The time interval between storm inception and
observation is called duration. If wind speed is steady,
while fetch and/or duration are increased, the sea
condition eventually takes on a statistically stable
structure which is called fully developed. Further in-
creases in fetch and duration have no significant effect
on the statistical characteristics of the wave pattern.

If the observation point is outside the storm area,
Fig. 1(c), then it is seen that the arriving seas, now
called swells, clearly have a more regular character,
depending upon the distance and area of the storm.
The crests of the various component wave trains be-
come more nearly parallel as the observation point
recedes from the storm area, with the result that actual
waves become more and more long-crested, that is,
the identifiable length of a wave crest becomes large
compared with the spacing between crests. Distance
or fetch has the effect of limiting the range of wave-
lengths (frequencies) reaching an observation point at
a given time, i.e., the greater the distance, the nar-
rower the bandwidth of frequencies. This filtering ef-
fect is due to the different celerities of the different
component wavelengths. The lengths of waves in this
band decrease with time, with the shortest identifiable
components being greatly attenuated and perhaps ar-
riving well after the storm has passed. These qualities
of long-crestedness and limited bandwidth are respon-
sible for the characteristic regular appearance of swell.

A complete long-term description can best be pro-
vided by specifying many spectra (short-term) for dif-
ferent points throughout the area under consideration,
and at regular increments of time. Despite the lack of
an entirely satisfactory theory of wave generation,
oceanographers have devised semi-empirical methods
of predicting the changing wave spectra by consider-
ing the effect of winds on the growth or decay of local
wave systems. For example, Pierson, et al (1955) de-
scribed a method of accomplishing this, making use of
theoretical work of Phillips and Miles, as well as em-
pirical data. See Section 2.9.

Since the short-term irregular wave patterns ob-
served at sea will be described in terms of regular
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component wave trains of different frequency and di-
rection, it is important to consider next the character-
isties of simple gravity waves.

2.2 Theory of Simple Gravity Waves. In the hydro-
dynamic theory of surface waves it is assumed that
the crests are straight, infinitely long, parallel and
equally spaced, and that wave heights are constant.
The wave form advances in a direction perpendicular
to the line of crests at a uniform velocity, V,, usually
referred to as celerity to emphasize that it is the wave
form rather than the water particles that advances.
Such simple waves are usually referred to as two-
dimensional waves. It is assumed in wave theory that
water has zero viscosity and is incompressible. It is
convenient also to assume that, although waves are
created by wind forces, atmospheric pressure on the
water surface is constant after the wave train has been
established.

The surface wave is the visible manifestation of
pressure changes and water-particle motions affecting
the entire body of fluid—theoretically to its full depth.
The motion of particles under the idealized conditions
can be characterized conveniently by a quantity known
as the velocity potential ¢ which is defined as a func-
tion whose negative derivative in any direction yields
the velocity component of the fluid in the same direc-
tion. From this function all of the desired wave char-
acteristics can be derived. Treatises on hydrodynamics
give the velocity potential for a two-dimensional wave
in any depth of water and express the resulting wave
form by a Fourier series (Korvin-Kroukovsky, 1961;
Lamb, 1924). If certain simplifications are introduced,
which amount to assuming the waves to be of very
small (theoretically infinitesimal) amplitudes, the so-
called first-order theory reduces the wave to the first
harmonic alone. (A more exact solution is discussed in
Section 2.3). The simplified potential is as follows:

_ 71 Coshk(z + )
g i sinh kh

The origin is taken at the still-water level directly over
a hollow, Fig. 2; z is the horizontal coordinate, positive
in the direction of wave propagation, and z is the ver-
tical coordinate, positive upward. This positive upward
convention is adopted for consistency with the work
on ship motions to follow, although it differs from some
references. Also

.sink(x — V.it) (3)

{ is surface wave amplitude (half-height from
crest to trough)
L, is wave length
h is depth of water
k is the wave number, 2w/ L,
V., is wave velocity or celerity
t is time

For the case of deep water (roughly 2 > L,/2) the
ratio

%
o
Ven

-2,5

Fig. 2 Coordinates for waves

cosh k(z + h)
sinh kh

approaches e* and the expression for the velocity po-
tential becomes

¢ = —LV.e“sin k(x — V.t) (4)

Hence, the horizontal and vertical components of water
velocity at any point in deep water are given by

. kL V. e cos k(z — Vi) (5)

e ox

and

—%iz) = kL Ve sin k(x — V.t) (6)
If the path of a particular particle be traced through
a complete cycle, it will be found that in deep water
all particles describe circular paths having radii that
are { at the surface and decrease with depth in pro-
portion to e**. Strictly, z should here be measured to
the center of the circular path described by the particle.
In shallow water the particles move in ellipses with a
constant horizontal distance between foci and with ver-
tical semi-axes varying with depth. At the bottom, the
vertical semi-axis is zero, and the particles oscillate
back and forth on straight lines.

To determine the foregoing velocities in any partic-
ular case, it is necessary to derive an expression for
wave velocity V.. Books by Milne-Thompson (1960) and
Korvin-Kroukovsky (1961), show that the conditions
of velocity and pressure at the surface of the wave
require that

w =

¢ o

ET
Inserting Equation (3) for the potential in (7), it can
be shown that

=0 (M

V2 =9 tanh kh ®)

ol
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which defines the velocity of a wave in any depth of
water. Then in very shallow water (roughly 2 < L, /25)

Ve = gh 9
" and in deep water (& > L,/2),
V:=g/k = gL,/ 2% (10)

For many problems the most important aspect of
waves is the distribution of pressure below the surface.
It is convenient to compute the pressure relative to
horizontal lines of constant pressure in still water. The
elevation { of lines of equal pressure in a wave relative
to the still-water pressure lines, Fig. 2, is obtained from
the expression

o LOP
g ot
which is derived in hydrodynamics texts (Lamb, 1924)
by means of Bernoulli’s theorem for a gravity force
acting on a body of fluid under uniform atmospheric
pressure, assuming that wave height is small (strictly
speaking, infinitesimal). Then for water of any depth
[ = kL V.2 cosh k(z + h)
g sinh kh
Since from Equation (8) kV.?/g = tanh kh, this can
be simplified to
£ Zcosh(z + h)
cosh kh

In deep water (large &) the ratio cosh k(z + &)/
cosh kh approaches e, and

= Le* cos k(xz — V.t)

(11)

cos k(xz — V.it) (12)

cos k(z — V.t) (13)

(14)

These expressions show that contours of equal pres-
sure at any depth are cosine curves which are functions
of time when observed at a fixed point z, or a function
of distance x at a particular instant ¢,. Since e** de-
creases as z decreases, the contours of equal pressure
are attenuated with depth, approaching zero amplitude
ag z » — o, These contours are the same as those
generated by the orbital motions of individual parti-
cles.

To obtain the surface wave profile, z is taken equal
to zero in Equation (13) or (14). Then

L = L cos k(x — V.t)

for both deep and shallow water.

A more convenient form for the equation of a simple
harmonic wave can be obtained by using circular fre-
quency o = 27/ T,. The period T, is the time required
for the wave to travel one wave length, and hence the
relationship between wave length and period in deep
water can be derived from Equation (10).

Lw = Ll“ = (2‘”[’10)1/2
V. (gL./2m)" g

(15)

ro= (16)

IN WAVES 7

Hence, circular frequency

1
-7 - (EZ—T/r—g) = (k)= kY. ()

w
and
L = T cos (kx — wt)

When observed at a fixed point, with z = 0

(18)

L = L cos(— wt) = I cos wt
Alternatively, if the wave profile is studied at ¢ = 0
L = cos kx

The slope of the wave surface is obtained by differ-
entiation:
i,

dx

The slope is maximum when kx = #/2 and sin kx =
1.0. Then

= kI sin kx (19)

di,

dx

where £, is the wave height from hollow to crest. This
maximum slope occurs midway between a crest and a
hollow.

The contours of constant pressure that have been
derived in Equations (13) and (14) also indicate the
increase or decrease in pressure relative to still water
at any point in terms of depth or head. Hence, to obtain
the pressure p at any point we need only multiply the
head by density pg, or

p =pg(—=z + 1)
In deep water, then, from Equations (11) and (14)

Max { = 2w (20)

p = —pgz + Lpge” cos (kr — wt)

As previously noted, z should be measured to the cen-
ter of the circular path described by the particle at the
point in question.

Evaluation of the equation for pressure in a deep-
water wave under the crest, at 27 below the original
still-water level (z = —2{), gives, for example

p = —pg(—20) + Ipge™ = plg(2 + &%)
and for £ = 0.015, and = 10, for example:
p = plg(2.0 + 0.74) = plg(2.74)

If the pressure were directly proportional to depth
below the surface, it would be p{ ¢(3.0) at this point.
The difference represents the so-called Smith effect
(Smith, 1883). Similarly, under the wave hollow at a
depth of 27 below still-water level (z = —2{),

p = plg(2.0 — 0.14) = plg(1.26)
instead of pZ ¢(1.0). Thus under the crest the pressures
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are decreased, and under the hollow the pressures are
increased, by the Smith effect.

The energy in a train of regular waves consists of
kinetic energy associated with the orbital motion of
water particles and potential energy resulting from
the change of water level in wave hollows and crests.
The kinetic energy can be derived from the velocity
potential. For one wave length L, the kinetic energy
per unit breadth of a wave of small height is given in
books on hydrodynamics (Lamb, 1924; Korvin-Krou-
kovsky, 1961), as

iy, 04
/"fd’azdx

This is evaluated for a simple cosine wave as

% C*pgL,
The potential energy due to the elevation of water in
one wave length is obtained by taking static moments
about the still-water level. A unit increment of area is

{dx and the lever arm is {,/2. Hence, integrating,
potential energy is

[ potesstede

Lw
g Vngf Ldz
0

For a cosine wave,
L =T cos k(x — V.t)

andat¢ =0
L = T cos kx
Hence, potential energy is
% C*pgL.

These derivations show that wave energy is half
kinetic and half potential when averaged over a wave
length. Total energy is

% pgL°L,
Or the average energy per unit area of surface,
(21)

Another useful property of waves, especially irreg-
ular waves to be discussed in Section 2.6, is the var-
iance, or the mean-square value of surface elevation
as a function of time. In general, the variance of a
continuous function with zero mean is given by,

Ave. unit Energy = % ngz

T/2
&(t)?) = Lim Tf £ (t) dt 22)

where the brackets ( ) indicate mean value of.

In the case of a simple harmonic wave, as given by
Equation (18) at x = 0, T can be taken as the wave
period, and it can be shown that

{€(e)*) = KL* (23)
That is, the variance of wave elevation of a single cycle
of a sine wave is equal to one-half the square of the
amplitude. This theorem is also true for a finite number
of complete cycles, or in the limitas 77 —+ « in Equation
(22).

For the work to follow, the two-dimensional regular
wave can be considered to be a three-dimensional wave
train with straight, infinitely long crests, i.e., a long-
crested regular wave. Furthermore, with axes fixed in
the earth the surface elevation of such waves traveling
at any angle, p, to the z-axis can be described by the
general equation,

Uz, y, t) = L cos [k(zcos u

(24)

where € is a phase angle. For the case p = 0 this
equation reduces to Equation (18), except for the phase
angle, which is needed when more than one wave is
present.

If a fixed point at the origin is considered (z = 0, y
= (), the equation becomes

{(t) =T cos (—wt + € (25)*

Wave Properties. The following is a summary of
the properties of two-dimensional harmonic waves and
waves of finite height in deep water (any consistent
units):

Wave number

+ y sin p) — ot + €

k=2x/L,= o®lg

Surface profile L =1 cos k(x — Vi) (15)
(first approxima- ;
tion) ={ cos (kx — wt) (18)

¢ = —L Ve sin k(x — V.t) (4)

pme o (8 o g
AT 2 27 w

Velocity potential

Wave celerity (10)
_o V& _9Ts

Wave length S 7 = o (16)
Wave period @nL,/g)" (16)
Maximum wave - A

slope (first ap- 47 = 9 & = TPw

proximation) eig LT (20)
Wave energy per =

unit area %hpgl? (21)
Wave variance Wy ="%r* (23)

In feet-seconds units:
Wave celerity V.= 226L,"

47 is often taken to represent the complex amplitude, in which
case the imaginary part defines the phase angle and ¢ is unnecessary.



MOTIONS IN WAVES 9

Wave length L,=5118T2=10.196 V2

Wave period T, = 0.442L,"

—

e

* DIFFERENCE BETWEEN
STOKES AND SINE

WAVE - 2nd HARMONIC STOKES WAVE

SINE WAVE

-—— o e
—————

— -
e —————

Fig. 3 Comparison of sine wave and Stokes wave

2.3 Waves of Finite Height. A hydrodynamic theory
of waves of finite amplitude, i.e., not infinitesimal as
previously assumed, was formulated by Stokes (1847)
and others. It corresponds with the observed fact that
actual waves have sharper crests and flatter hollows
than the simple cosine wave assumed in the preceding
section. The equation for velocity potential, which
leads with approximations to the simple harmonic
wave, yields a second-order wave profile when the ap-
proximations are not made. The solution can be ex-
tended with further refinements into a series
expansion, and therefore, the wave form, in principle,
can be expressed to any desired precision by taking a
sufficient number of terms. Actually, for all practical
purposes, the Stokes equation to the second order of
approximation is satisfactory for ship problems. Ex-
pressed as a function of z at fixed time ¢ = 0, in deep
water, the surface profile is

2
L, = { cos kx + ™ - o8 2k

In other words, the simple cosine curve is modified by
a harmonic which is half the length of the fundamental,
Fig. 3. The velocity of the harmonic wave, however,
must be the same as for the fundamental.

As wave height increases, the crest approaches a
cusp, the double angle of which is 27 /8 radians or 120
deg, which corresponds to a limiting wave height from
crest to trough of 0.14 L, or approximately % L,,. Real
waves will break well before this height is reached.

Consideration of water-particle velocities in a wave
of finite height reveals that the forward water velocity
at a wave crest is greater than the backward velocity
in the hollow. This difference in particle velocities,
when averaged over wave length, leads to the mean
velocity of water flow or mass transport

% = k*TV. 2= (27)

when z is the mean particle depth at which the velocity
is sought. Hence, the particle motion is not exactly
circular.

It can be seen from Equation (27) that the velocity

(26)

w

reduces rapidly with depth. Even at the surface the
drift velocity is only of the order of 2 to 3 percent of
wave velocity, although it may be a significant per-
centage of the water-particle velocities.

While the Stokes wave, with its sharpened crest and
flattened trough, is a more accurate geometrical model
of real regular waves, it suffers from a limitation that
negates its value in treating storm seas and swell, and
the principle of superposition does not apply. If two
Stokes waves are added, the sum is not a valid wave
form. This is easily seen by simply adding two identical
waves, which is equivalent to multiplying Equation (26)
for {, by 2. But for this to be a valid Stokes wave, the
second term should have been multiplied by 4. It has
become standard practice to accept the slight errors
in wave shape of linear harmonic wave theory in order
to achieve simplicity in treating the additive wave sys-
tems that are characteristic of both sea and swell.
Errors in form become significant when waves become
steep enough to approach breaking, and when the ge-
ometry of the wave crest is a factor in the treatment
of a problem. But a correct mathematical analysis of
nonlinear short-crested irregular waves implies a great
increase in complexity (St. Denis, 1980).

2.4 Trochoidal Waves. From the early days of na-
val architecture it has been customary to make use of
a trochoidal wave in some ship-design problems. It is
a convenient form from the geometrical point of view,
but it fails to meet certain requirements of classical
hydrodynamics and cannot be derived from the velocity
potential. Its profile is almost identical with the second-
order Stokes wave. In deep water all particles within
trochoidal waves follow circular orbits about fixed cen-
ters at a constant angular velocity. In any horizontal
line of orbit centers, the radii are equal but the phase
of adjacent particles varies successively. In any ver-
tical line, all the particles have the same phase but the
radii of their orbits decrease exponentially as the depth
increases. Particles which, in still water, may be iden-
tified by the intersections of a rectangular grid, take
the positions shown by the intersections of the dis-
torted grid in Fig. 4 at some instant during the passage
of a wave. Those which were originally in the same
horizontal line lie on undulating surfaces, while those
originally in the same vertical line lie along lines which
sway from side to side, converging under the crests
and diverging under the hollows. The orbit centers are
somewhat above the still-water positions of the cor-
responding particles. The wave form travels to the left
when the generating circles, with fixed centers, revolve
counterclockwise.

The curve joining a series of particles originally in
the same horizontal plane is the same as that which
is generated by a point on the radius of a circle as the
circle rolls along the underside of a horizontal straight
line, as is evident from a comparison of Figs. 4 and 5.
Such curves, whose limit is the cycloid, are called tro-
choids. They are also contours of equal pressure.
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R = RADIUS OF ROLLING CIRCLE.
SEE FIG. 5
-«—DIRECTION OF WAVE ADVANCE
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A VOLUME SUCH AS ABCD IN STILL WATER IS
DISTORTED AS ABCD' IN WAVE WATER

Fig. 4 Trochoidal wave motion

TRACK OF ROLLING CIRCLE
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Fig. 5 Geometry of trochoid

If we call the orbit radius » and the amplitude ¢,
then { = 7. Quantities referring to the surface wave
are denoted by subscript 0; thus { = r,. If R is the
radius of the rolling circle and L, is the wave length
from crest to crest, L, = 27 R. To draw a trochoidal-
wave surface, the selected wave length is divided by
a convenient number of equally spaced points, and,
with each as a center, a circle of diameter equal to the
selected wave height is described. In these circles are
drawn radii at successive angles which increase by the
same fraction of 360 deg as the spacing of the circles
in relation to wave length. The curve connecting the
ends of those radii is the desired trochoid.

In Fig. 5, an ordinate z upward, and an angular
velocity w counterclockwise, are considered positive.
From an initial position, shown at the left, the large
circle is assumed to be rolling steadily, counterclock-
wise, and after time ¢ to have reached the position
OCP, having turned through the angle 8 = wt. In this
case 6 is positive since w is counterclockwise.

The parametric equations of the trochoid in Fig. 5
are

x = RO + rsin @ = Rot + r sin ot
2=R+ rcos® =R + rcos wt
The radii of the circles in which the particles move

decrease exponentially with depth; that is, as in the
case of the harmonic wave

(28)

r = r,e"

where 7, is the radius of a particle at the surface, and
z is measured to the center of the circle in which the
particle moves.

The trochoidal wave is somewhat sharp in the crest
and flat in the trough like a simple wave in a model
tank, and like the Stokes wave, Fig. 3. Consequently,
for equal water volumes the lines of orbit centers must
be somewhat above the corresponding still-water lev-
els in order that the amount of water in the crest will
equal the amount removed in the hollow. It can be
shown that this rise of orbit centers is »*/2R, Fig. 4.

Although the trochoidal wave is reasonably realistic
for waves up to about L/ 20 in height, the limiting case
of B = r gives an impossibly steep wave with very
sharp cusps. Other characteristics of the trochoidal
wave, such as velocity, period, pressure change with
depth, are the same as for the simple harmonic wave
previously discussed.

Obviously the pressure at any point on the surface
of a wave is atmospheric. Furthermore, the sum of all
the hydrodynamic and buoyant forces acting on a sur-
face particle is perpendicular to the surface, as dem-
onstrated by Froude with a little float carrying a
pendulum. Although this statement can be proved on
the basis of the theory of a simple harmonic wave, it
is most easily demonstrated by means of trochoidal
theory.

Following Froude’s approach, it is convenient to deal
with the inertial reactions to the water-pressure forces
acting on the particle P in Fig. 6, although the latter
could also be determined directly. As previously
shown, the buoyancy and hydrodynamic pressure
forces in the wave cause the particle to move in a
circular path, and the equal and opposite reactions
consist of gravity mg acting downward and a centrif-
ugal reaction @QF" resulting from orbital motion of the
particle

mre®
It can be shown that in a trochoidal gravity wave w?
= ¢g/R and therefore the centrifugal reaction is

mg(r/R)

The resultant is PF in Fig. 6.
In triangles QCP and F'FP, PF"' is in line with QP
and F'F is parallel to QC. Also

P % P



