— ST RN
S A e L TR

RERRORACIERE
— et + ERMR + R

(H) Shaoying Liu 3

ATERZF HibRtt

Mo B S

ABERFTFT —AFEA, MR TRETE, G AL T ER SR TRE NG &K,
SHRMT AT, R, ARORGFRE ELARELT BiERALTTE XIEEFA]EA
B R2EAT . BT RER SR] R AL TAZH7 i SOFL Hpa i K.

ABBIASME, L6EE, HLIEENENHKNERE. e TR R B R TR i
T BRI, WS SE 2004 PETF “HMMBRUTE” HARK, EREHE: A BRARASHL
Statechart. Petri M. E(SIEFFHER. B RGHE. —WSH. BFLERMEIEY. HAZHE, R
% . Z. VDM # Larch 2. AFaMERTEHL. e T RS EELR AR E R AN BEA
A AL SR RAA RN TEEAARES.

Formal Engineering for Industrial Software Development, First Edition by Shaoying Liu
Copyright © Springer-Veriag Berlin Heidelberg 2004

Springer is a part of Springer Science + Business Media

All Rights Reserved.

This edition has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the
People’s Republic of China only and not for export therefrom.

b TERUR BN RIZIEE EF: 01-2008-2285
ERAFRE, SMEDAST. ZEFAIE: 010-62782989 13701121933
ABHEMEE FERLHEHFRRE, THREETHHEE.
BHBERELR B (CIP) iR

R TF R I TG oAk T A2 7 i—— S5 #g 4k + T 1 % %2+ 7 K A =Formal Engineering for Industrial Software
Development: ZE3C/(F)XI/>3E%E, —HEA. —b5: HERF UKL, 2008.8
(BB #ht « HENEEEER)
ISBN 978-7-302-18317-4
[Ak L% NLBAEFE—HM—FEX IV.TP311.52

w45 A BB 4578 CIP $idai% 7+ (2008) 5 116043 5

WERE: CFH
Ewiigit. HE=
WAEENH . /T F
HEZT: WERFHRME . Ht: SR ERRFEEHAE A B
http: /www. tup. com. cn BB # . 100084
B L3 #. 010-62770175] M. 010-62786544

HMEiEERS: 010-62776969,c-service@tup. tsinghua. edu. cn
FE B K . 010-62772015,zhiliang@tup. tsinghua. edu. cn

s Wi EEERRIARAH

: EEFEBIE

. 185X 260 EP W, 27 £ . 534 TF

: 20084 8 HE 111 Bl ¥. 2008 4E 8 HEB1 ENMI

: 1~3500

: 45,00 JG

it 2FHE A
S8 M I MW

AFMAEEXFERE W SR B B TS EN S R o) 8, 7 51 40 X% AL R R
k., BEARBIE. (010)62770177 % 3103 FEEERS . 03043301

Shaoying Liu

Department of Computer Science
Hosei University

Tokyo, 184-8584

Japan

sliu@k.hosei.ac.jp

Library of Congress Control Number: 2004102480

ACM Computing Classification (1998): D.2, F.3.1, 1.6, K.6.3

ISBN 3-540-20602-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concemned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German copyright law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag,
Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

The use of general descriptive names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KiinkelL.opka, Heidelberg
Typesetting: Camera-ready by the author
Printed on acid-free paper 45/3142 GF - 543210

— —
|

iJ

AL E I T 098 S B T 0 R A 1 5 5 A TR, HER
%Wﬁ$%ﬁ@ﬁﬁﬂﬁ§%ﬁ%il§%2i,uk%&ﬁ%%%%ﬂ%%ﬂ@ﬁTH
DR RE MR BEHIR B SOFL(Structured Object-Oriented Formal Language)Ll
E%%%%MZL@Q@%%%ﬁﬁﬁﬁﬁ%%ﬁkl&ﬁ&,%ﬁsmmﬁﬁa

k%%ﬂﬁ,kﬂﬁ##%%ﬁﬁ%-$-$%¥%ﬁﬂﬁkﬁ§m%ﬁ%#ﬁoE
%IE%%%E4:ﬂ%\@%ﬂ%%o%T%ﬁﬁ%&%%ﬁﬁ%%ﬁ#?%,ﬁﬁ%
E%MﬁEﬁﬂéﬁﬂ@%%F%%*,@%wﬁﬁi\%gﬁﬁﬁﬁﬁ\ﬁ%%5ﬁﬁ
ﬁ%ﬁ%%ﬁ%%@ﬁOE%§%ZL,ﬁﬁ%%ﬁﬁﬁ%%%ﬁﬁ,M@ﬁ#%%%%
%%w\ﬁﬁﬁwﬁﬁﬁ%ﬁ%,#u—%%ﬁﬁ%ﬁimﬁﬁﬂoﬁmﬁﬂ%@%ﬁﬁ
%Kﬂ%%éﬁ@i%%,Eﬁﬁmﬁﬁ#ﬁﬁﬁﬁﬁﬁoﬁﬁ,ﬁﬁ%%K%ﬁE$m
ﬁmoiﬁtykﬂﬁ#%%%ﬁﬁﬁﬁ*~&%%mMX%%A%%ﬁ,%ﬁ%&%#
F%%iﬁﬁﬁﬁk,Kﬁﬁﬁiﬁ,QK%ﬁﬁﬁio%%,%&%%#F%%ﬁ%%
AR T8 BB LS B 5o B A AT P4

ﬁﬁ%#ﬁﬁ%“ﬁﬁﬁ%%gﬁﬁ%%#ﬁﬁﬁ%o%ﬁﬁ%%K%i%ﬁﬁ,_
ﬁﬁ%??%ﬁﬂ%EAE?:ﬁ$\ﬂm%ﬂﬁ%o&ﬁ%ﬁ,ﬁﬁ&%ﬁm@%ﬁ
i,ﬁﬁm%ﬁgﬁﬁmﬁﬁg%%ﬁmﬂﬂ%ﬁ%,ﬁﬁ%ﬁi%ﬂﬁ%ﬁ%%u%ﬁ
E%E%W%%ﬂﬁo%%%ﬁ#%ﬁﬁ&,%%%%ﬂﬁﬁﬁ%%ﬁﬁﬁ%,ﬁﬁiﬂ
%E%%%ﬁ%lﬁ%%@%%%%ﬁﬁ%F%%*ﬁ%%&ﬁiﬁoE?Eﬁ%%iﬁ
%m%%%*%%%&*%%%ﬁ&%:Xﬁ,ﬁ@%#iﬁ%ﬁﬁﬁ%ﬁ%%%ﬁ%u
%&i%ﬁi%&ﬁﬁimi%%ﬁoﬁﬁ%ﬁ&?iﬂ%%Tﬂiﬁﬁ%iﬁIﬂ%ﬁ
RFET.

Lt -EH4ERLIK, LA Hoare M Dijkstra FH) 5 55 B B U 46 B S % T ke
%%ﬁ%ﬁﬁﬁ%%?%ﬂﬁﬁﬁ#%ﬁ%&TE%%M%&*,%%%Lﬁﬁﬁﬁ&?
E%%—ﬁoﬁ%&ﬁ@%%ﬁ%ﬂﬁﬁ%%ﬁﬁﬁg,%ﬁiﬁ%ﬁﬁﬁ%,u&ﬁ?
E%ﬁﬂ%ﬁﬁoﬁﬁﬁm%,ﬁ%%ﬁ%ﬁ*ﬂﬁﬁﬂﬁﬁ%#%%ﬁﬁﬂﬁ#ﬁﬁ%
F%ﬁ,W*%Eﬁiﬂﬁﬂﬁﬁ%ﬂﬂ%ﬁﬁﬂ%ﬂ%%ﬁﬁo%ﬁﬁ&,kﬂﬁ#%
%%%ﬁ%ﬂﬁ%%%&ﬁﬁ%ﬁﬁ,%&ﬁ%ﬁﬁy&%%ﬂ%ﬁ@iomz,ﬁﬁi
ﬁ%ﬂﬁﬁ&ﬁﬁ%ﬁﬁ%ﬁ*%ﬁﬁﬁkﬁ%%%ﬂﬁﬁﬁﬁ%ﬁ%iﬁ%,@%ﬁﬁ
&*ﬁﬁ%—&ﬁ%%%#ﬁﬁﬁﬁﬁﬁomﬁﬁ%ﬁﬁﬁﬁﬁ%%%ﬁ%ﬁﬁﬁ%ﬁ%
ﬁ%%%%#lﬁﬁ&ﬁﬁﬁ*u%%ﬂﬁﬁﬁmwﬁ%ﬁ\ﬁﬁﬁ%&ﬂ%%ﬁ%ﬁ%
%ﬁﬂ%%ﬁ#iﬁﬁ%ﬂﬁ#ﬁi%EW%&%-ﬁ%XEX%W%%@O

%ﬁ%Iﬁﬁ&ﬂSmmﬁ%ﬁ%&ﬁﬁ%ﬁFML@%A+R%M%&#E@
ﬁ$%°EH%ﬁ%@ﬁﬁ%%%ﬁ%ﬁﬁﬁ&ﬁﬁﬁ%éﬁ%%%%#%Eﬁﬁﬁﬁ%

11 BRAF IR T AL LA 7 ok LA+ @ A R Xk

A, R R T7 i RE 98 SE T S — R E T R B, &A% H s v
KU F LR T RBEAR AR RGN, FHFERA &SR a B R a5 s T A
XA, HRIABHARGHE BTN FRMG R Y, SOFL Hikift 7 Affa, o
MARREF 2 AR BB ST 2 8@ LR B B = k.
A A TR U T 085R, SOFL 24 T /™% i) 5t (review) R i3 B 35 MR 35
Ao A7 R M) F G A RITHT [0 36 ST 5 VA %% E AR, SOFL R4t T 145 # 4 A0 ()
MBI THEA NS G IR, A543 8540 77 748 75 SR 40 b7 R B e o 77 T R 4 B0
AT {8 FF 2 RO P 2 (VB BT AN A, T A T 1 ok 50 7 V2 A0 0 45 G 7 T R 94 B
R LA S BT T R R SR AT 4 AN B R . e R T M AL e A BT 1 B
RIFAIBRTTENMBAR . AH B R IART P IOHAR, SOFL 124t 75 T B R AL #3130
T A A (inspection) M B IR R R . BARX RGP EEB AR T AIEAA LY
W, HEFICHM SOFL LA 48|05y . BTS2, SOFL AL, wim%t
ST ET — 5, FRARE, TR SRR TR %, oD
My AR BB TREARPTIER, HBUR IEAES I T £ 5 0 TR IR AR 503 11 04 R 2%
i+

AT PR R T 15 2 18 0 42 R B 1 T A B LA B 60 7™ 385 4 J80R0 S PR T 4T B 8 s Ak
LRRTTREAFHARBIRIE 20 FRIGWEF AR, H o 3E— 15 W 5 I e S A fee Lax A —
HAWRKAE TROEREE, RIOAHET BN TR XA KRS TRMN
RIETTE . EARHIEE, 162008 455 29 mIIELHEILR B2, Al 5ERN
B L, BT R AR, BRSNS R B K B RIS A1, W Bh R S
T EZERBIE A LFET7 % SOFL N AR EN KRG TRAM RS L. PIRE. MIREL
R DREEARN RETBE . 330070 3 1% ARl 2 =) A 45 19 4 2 5052 B0 A TR U7 4K
PUBAE, ERILNHBRGEHA, B IFR & RS S s I HeE 1, b A
Aol BRRLA R TAERIE R B AL

Shaoying Liu(%| 7> %)
HEAZBXFHENRER
2008 &£ 8 A

Shaoying Liu

Formal Engineering
for Industrial
Software Development

Using the SOFL Method

With 90 Figures and 30 Tables

&) Springer

To my family

Foreword

In any serious engineering discipline, it would be unthinkable to construct a
large system without a precise notion of what is to be built. Equally, any
professional engineer must record not only his or her proposed solution to
an engineering challenge, but also reasons why the solution is believed to
be correct. Software engineering faces the challenge of creating very large
systems and must therefore solve both of these challenges. Combined with
established good practice such as inspections, formal methods can make a
significant impact on software dependability.

The fact that descriptions and correctness arguments were required was ob-
vious to pioneers of computing as early as von Neumann and Turing, who both
wrote about ways of reasoning about programs. Since their early attempts, the
need has been to find tractable ways of coping with systems of ever increasing
size. The landmark contributions of Bob Floyd and Peter Naur culminated
in Tony Hoare’s wonderfully clear exposition of “axioms” for reasoning about
programming constructs. This in turn led to development methods like VDM,
Z, and B. Such methods work well for systems which are sequential and self-
contained, but extensions were required to deal with other real world problems
such as concurrency and “open” systems where obtaining specifications (and
recognising that the requirements will evolve over the lifetime of the system)
is as challenging as developing the “closed” components which result.

'This book brings together ideas from VDM and from object-oriented think-
ing to propose an approach to the development of realistic software systems.
“SOFL” builds on some of the most pervasive ideas to come from theoretical
computing science and amalgamates them into an approach which the author
has used on a variety of practical applications. Such books are to be whole-
heartedly welcomed because they are written with an acute understanding of
the issues for designers of useful software.

The success and pervasiveness of object-oriented methods suggest that it
is unnecessary to say more about their marriage with formal methods since
it might appear to be an obvious step. I should however like to add some
arguments in favour of this specific combination. It is frequently argued that

VIII Foreword

today’s computer applications are inherently complex. I think only part of
this complexity is inevitable in today’s systems. Of course, the code for an
online airline seat reservation system of 2003 is bound to be larger than the
code for a simple batch payroll system of the 1960s. But it is also clear that
much of today’s software is very poorly structured: its architecture is often
opaque and users find it almost impossible to form a mental model of how
it works. With a WYSIWYG word processor, this can result in frustration
and expensive loss of productivity for professional users; for safety-critical
applications, poorly understood systems present the real danger of an operator
making life threatening mistakes. The ultimate contribution of formal methods
will be to help clean up the architecture of systems, and the marriage with
object-oriented ideas is important in this regard.

Another key contribution of object-oriented implementations is that they
offer a way of controlling interference in concurrent computing. Interference
is the key characteristic of concurrent programs (whether the parallel pro-
grams share states or interact only by communication primitives). Reasoning
about interference can be delicate and complex; good engineers will reduce
the areas where such complexity is required to a minimum. Object-oriented
implementations put the control of interference where it belongs: that is, with
the designer.

The combination of formalism and object-oriented design has the potential
to yield clean and accurate implementations. The reader is encouraged to
understand and use SOFL.

Cliff B. Jones
University of Newcastle upon Tyne

Preface

This book aims to give a systematic introduction to SOFL (Structured
Object-Oriented Formal Language) as one of the Formal Engineering Meth-
ods for industrial software development. Formal engineering methods are a
further development of formal methods toward industrial application. They
support the integration of formal methods into the software development pro-
cess, the construction of formal specifications in a user-friendly manner, and
rigorous but practical verification of software systems. SOFL achieves all of
these features by integrating data flow diagrams, Petri nets, VDM, and the
object-oriented approach in a coherent manner for specifications construction,
and by integrating formal verification with fault tree analysis and testing for
reviewing and testing specifications. It also provides a way to transform for-
mal specifications into Java programs. SOFL has been taught for many years
at universities, and has also been applied to systems modelling and design
both in industry and academia.

Formal methods have made significant contributions to the establishment
of theoretical foundations and rigorous approaches for software development
over the last 30 years. They emphasize the use of mathematical notation in
writing system specifications, both functional and non-functional, and the em-
ployment of formal proofs based on logical calculus for verifying designs and
programs. However, despite a few exceptions, most formal methods have met
challenges lobbying for acceptance by industrial users. A lack of appropriate
education may be seen as one of the major reasons for this unfortunate sit-
uation, but, apart from this, a bigger problem is that formal methods have
not successfully addressed many important engineering issues related to their
application in industrial environments. For example, how can formal specifica-
tions, especially for large-scale systems, be written so that they can be easily
read, understood, modified, verified, validated, and transformed into designs
and programs? How can the use of formal, semi-formal, and informal methods
be balanced in a coherent manner to achieve the best quality assurance under
practical schedule and cost constraints? How can formal proof and testing,
static analysis, and prototyping techniques be combined to achieve rigorous

X Preface

and effective approaches to the verification and validation of formal specifi-
cations, designs, and programs? How can the refinement from unexecutable
formal specifications into executable programs be effectively supported? How
can the evolution of specifications at various levels be assisted and controlled
consistently and efficiently? How can software development processes be for-
mally managed so that they can be well predicated before they are carried
out, and well controlled during their implementations? And how can effec-
tive software tools supporting the use of formal methods be built so that the
productivity and reliability of systems can be enhanced?

Since the research to provide possible solutions to these questions addresses
a different aspect of the problem; I call this area Formal Engineering Methods.
In other words, formal methods emphasize the utilization of mathematical no-
tation and calculus in software development, without considering the human
factor (e.g., capability, skills, educational background) and other uncertainties
(e.g., accuracy and completeness of requirements, changes in both specifica-
tions and programs, the scale and complexity of systems), whereas formal en-
gineering methods advocate the incorporation of mathematical notation into
the software engineering process to substantially improve the rigor, compre-
hensibility, and effectiveness of commonly used methods for the development
of real systems in the industrial setting.

After introducing the general ideas of formal engineering methods, this
book provides a tutorial on the recently developed formal engineering method
SOFL. The material originally evolved from my research publications over last
15 years, from courses, and from seminars offered at universities and compa-
nies in Japan, UK, USA, and Australia. It is intended to be the basis for
courses on formal engineering methods, but it also contains the latest new
research results in the field. By reading through this book, the reader will
find that SOFL has provided many useful ideas and techniques as solutions
to many of the questions raised above. It not only makes formal methods
accessible to engineers, but also makes the use of formal methods enjoyable
and effective. In order to help readers study SOFL easily, I have tried to
make the descriptions as precise and comprehensible as possible. 1 have also
tried to avoid unnecessary formal semantics of SOFL constructs, to the ex-
tent that this does not affect our understanding them. Numerous examples
are given throughout the book to help the explanation of the SOFL specifi-
cation language and method, and many exercises are prepared for readers to
improve their understanding of the material they have studied and to check
their progress.

The objective of this book is to bring readers to the point where they can
use SOFL to construct specifications by evolving informal specifications to
semi-formal ones, and then to formal ones. It is also intended to help readers
to master rigorous and practical techniques for verifying and validating speci-
fications, to learn the process of developing software systems using SOFL, and
to get new ideas for building intelligent software engineering environments.

Preface X1

Audience

This book is written for people who want to improve their knowledge and
skills in developing complex software systems. Readers who are interested
in formal methods, but frustrated by using them in practice, will benefit
greatly from this book. Although I have made efforts to make the book as
self-contained as possible, and have provided many exercises for individual
study, the reader will need some experience in programming and basic knowl-
edge of discrete mathematics to appreciate and digest some of the abstract
material.

Using This Book

This book can be used at the second year undergraduate or above level
as a computer science textbook for courses on logic and formal specification,
advanced software engineering, and software specification, verification, and
validation, respectively. According to my experience at Hosei University and
other institutions, in the course on logic and formal specification that takes
about 24 hours, the fundamental knowledge on first order logic and skills for
writing comprehensible formal specifications for large-scale software systems
can be introduced based on the contents of chapters 1 to 12.

The course on advanced software engineering usually takes 26 hours, incor-
porating rigorous software development techniques using a formal specification
language, including skills for writing modular, hierarchical, and comprehensi-
ble formal specifications, evolving informal specifications to semi-formal and
then to formal ones, transforming structured abstract design into an object-
oriented detailed design, and transforming detailed design into object-oriented
programs in Java. The contents of this course can contain chapters 1, 4 to 16,
19, and 20.

In the course on software specification, verification, and validation, which
is suitable for graduate students and needs about 24 hours, the techniques for
writing formal specifications and for their verification and validation can be
introduced based on the contents of chapters 4 to 18.

The book can also be used as a reference book to support the study of
other related courses or individual study of formal engineering methods for
software development. To make the book easier to use, I have organized the
materials into nine parts:

Introduction. Chapter 1 explains the motivation of formal engineering
methods and describes what they are. After discussing the problems in soft-
ware engineering and difficulties in using formal methods, I describe the gen-
eral ideas and features of formal engineering methods and their relation with
SOFL.

Logic. Chapters 2 and 3 introduce mathematical logic that is adopted by
SOFL. Both propositional logic and predicate logic are explained, and their
application to the writing of and reasoning about SOFL specifications are
discussed.

Specification. Chapters 4 to 6 cover the most important components of
SOFL specifications: module, hierarchy of modules, and explicit specifications.

XII Preface

We explain the techniques of combining graphical notation and formal tex-
tual notation in writing comprehensible but formal specifications with these
components.

Data types. Chapters 7 to 12 describe all the built-in data types in SOFL,
which include basic types, set types, sequence and string types, composite
and product types, map types, and union types. Each type is introduced by
explaining its constructors and operators, and their use in specifications.

Classes. Chapter 13 is concerned with the concept of class: a user-defined
data type. We discuss the structure of classes by explaining their similarity
with and differences from modules, and the way to use classes in module
specifications.

Software process. Chapters 14 and 15 present a software development
process using SOFL from informal specifications to programs, and in partic-
ular elaborate several techniques for constructing formal specifications in an
evolutionary manner.

Case study. Chapter 16 describes a case study of specifying an ATM
(Automated Teller Machine) using the SOFL specification language. This case
study is designed to show the entire process of developing a detailed design
specification from an informal user requirements specification, and gives the
reader an opportunity to review and digest the contents studied before this
chapter.

Verification and validation. Chapters 17 and 18 introduce two tech-
niques for verification and validation of specifications: rigorous reviews and
specification testing. We explain how formal proof and the practical techniques
like reviews and testing are integrated to provide rigorous but practical meth-
ods for verification and validation of specifications.

Transformation and software tools. Chapter 19 explains the principle
and technique for the transformation of design specifications into Java pro-
grams, including data transformation and functional transformation; the last
chapter, 20, discusses the potential features of an intelligent software engineer-
ing environment supporting formal engineering methods, in particular SOFL,
and its importance in enhancing the productivity and reliability of software
products.

All readers are recommended to read Chapter 1, but those who are ex-
perienced in programming and have sufficient knowledge about mathematical
logic can skip Chapters 2 and 3. Chapters 4 to 6 present the fundamental
principles and techniques for constructing specifications, and therefore are
suitable for all readers. Chapters 7 to 12, concerned with abstract data types,
need attention from the beginners, but can be quickly browsed by those who
are familiar with VDM (Vienna Development Method), with caution because
of the differences in syntax. Chapters 13 to 20 contain specific materials on
SOFL and are recommended for study by all readers.

Acknowledgements

The development of SOFL benefited from numerous discussions with many
people during the period 1989 to 2003. The initial research on SOFL, started

Preface X111

in 1989 at the University of Manchester in the UK, was motivated by Cliff
B. Jones’s book titled “Systematic Software Development using VDM” (first
edition), and benefited from the seminars and discussions he provided for the
formal methods group while I was studying for my PhD in Manchester. I am
grateful to John Latham for his constructive comments on the initial work
on the integration of VDM and Data Flow Diagrams, which establishes the
foundation for the development of SOFL. The initial integration work also
benefited from Tom DeMarco’s book titled “Structured Analysis and System
Specification” and from my experience of working with John A. McDermid at
the University of York. My sincere thanks also go to the people whose joint
work with me has impacted on the development of both the SOFL language
and the method presented in this book. Chris Ho-Stuart defined an operational
semantics for SOFL, and provided many suggestions on the improvement of
the SOFL language. Jeff Offutt developed an approach to testing programs
based on SOFL specifications. Yong Sun worked out with his research student
a prototype of a graphical user interface (GUI) for SOFL. Jin Song Dong pro-
vided a denotational semantics for SOFL using Object-Z. My former students
Tetsuo Fukuzaki and Koji Miyamoto developed a prototype specification test-
ing tool and a GUI for SOFL, respectively. I would also like to express my
gratitude to all the research partners and my students who have completely or
partially applied SOFL to develop their software systems, or combined SOFL
with other methods for software development. I appreciate very much the
feedback from my students after they read the draft of the book. Financial
support from the Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan through several research grants is gratefully acknowledged.
Finally, my thanks go to three anonymous referees for their constructive com-
ments and suggestions, and the editor Ralf Gerstner of Springer-Verlag for his
encouragement and suggestions that helped me to improve the initial draft
and for his painstaking efforts in the editing of the text.

Contents

1 Imtroduction 1
1.1 Software Life Cycle 2
1.2 The Problem. e 4
1.3 Formal Methods o 5

1.3.1 What Are Formal Methods 5
1.3.2 Some Commonly Used Formal Methods 7
1.3.3 Challenges to Formal Methods 9
1.4 Formal Engineering Methods 10
1.5 What Is SOFL 13
1.6 A Little History of SOFL i 16
1.7 Comparison with Related Work 17
18 EXercises ..o e 19

2 Propositional Logic 21
2.1 Propositions e e 21
2.2 OPEratorst e 22
2.3 Conjunction i 23
2.4 Disjunction 24
2.5 Negation e 24
2.6 Implication e 25
2.7 Equivalence...... 25
2.8 Tautology, Contradiction, and Contingency 26
2.9 Normal Forms e 27
2,10 Sequent 27
211 Proof ... 28

2.11.1 Inference Rules........ 28
2.11.2 Rules for Conjunction.............. 29
2.11.3 Rules for Disjunction 29
2.11.4 Rules for Negation............. 30

2.11.5 Rules for Implication 30

XVI

Contents
2.11.6 Rules for Equivalence L 30
2.11.7 Properties of Propositional Expressions 31
2.12 EXEICISES . ottt e e 34
Predicate Logic i 37
3.1 Predicates e 37
3.2 Quantifiers 40
3.2.1 The Universal Quantifier 40
3.2.2 The Existential Quantifier 41
3.2.3 Quantified Expressions with Multiple Bound Variables . 42
3.2.4 Multiple Guantifiers L. 43
3.25 deMorgan’s Laws 43
3.3 Substitution 44
3.4 Proof in Predicate Logic........ 46
3.4.1 Introduction and Elimination of Existential Quantifiers. 46
3.4.2 Introduction and Elimination of Universal Quantifiers.. 46
3.5 Validity and Satisfaction, 47
3.6 Treatment of Partial Predicates 48
3.7 Formal Specification with Predicates 50
3.8 EXOICISES ¢ v vt it e e e 50
The Module e 53
4.1 Module for Abstraction i 53
4.2 Condition Data Flow Diagrams 55
4.3 Processes e 56
44 Data FIoOWS e 68
4.5 Data StoresSt e e 71
4.6 Convention for Names. e . 79
4.7 Conditional Structures i 79
4.8 Merging and Separating Structures 81
4.9 Diverging Structurescovueni it 84
4.10 Renaming Structurettt 86
4.11 Connecting Structures vt inennan.. 87
4.12 Important Issueson CDFDs 88
4.12.1 Starting Processes ..., 89
4.12.2 Starting Nodesot i 90
4.12.3 Terminating Processes 90
4.12.4 Terminating Nodes oo, 91
4.12.5 Enabling and Executinga CDFD.................... 91
4.12.6 Restriction on Parallel Processes 92
4.12.7 Disconnected CDFDso ... 94
4.12.8 External Processes 96
4.13 Associating CDFD with a Module 97

4.14 How to Write Comments
4.15 A Module for the ATM 104

