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1
Introduction

1.1 The physics of the LHC era
1.1.1 Particle physics in the LHC era

The turn-on of the LHC in 2008 culminated an almost 20-year design and construction
effort, resulting in the largest particle accelerator (actually the largest machine) ever
built. At its inception a competition still existed with the TEVATRON which, although
operating at a much lower energy, had a data sample with a large integrated lumi-
nosity and well-understood detectors and physics-analysis software. The TEVATRON
had discovered the top quark and was continuing its search for the Higgs boson. As is
well known, the LHC suffered considerable damage from a cryogenic quench soon after
turn-on that resulted in a shut-down for about 1.5 years. Its (re)turn-on in 2010 was
at a much lower energy (7 TeV rather than 14 TeV) and at much lower intensities. The
small data sample at the lower energy can be considered in retrospect as a blessing in
disguise. There was not enough data to even consider a search for the Higgs boson (or
even for much in the way of new physics), but there was enough data to produce W
and Z bosons, top quarks, photons, leptons and jets — in other words, all of the parti-
cles of the Standard Model except for the Higgs boson. The result was the re-discovery
of the Standard Model (a coinage for which one of the authors takes credit) and the
development of the analysis tools and the detailed understanding of the detectors that
allowed for the discovery of the Higgs boson on July 4, 2012, with data from 7 TeV
in 2011 and 8 TeV in 2012. The LHC turned off again in early 2013 for repairs and
upgrades (to avoid the type of catastrophic quench that occurred in 2008). The LHC
detectors also used this two-year period for repairs and upgrades. The LHC ran again
in 2015, at an energy much closer to design (13 TeV). The increased energy allowed for
more detailed studies of the Higgs boson, but more importantly offered a much greater
reach for the discovery of possible new physics. At the time of completion of this book,
a great deal of physics has been measured at the operating energy of 13 TeV. Given
the new results continually pouring out at this new energy, the decision was made to
concentrate in this book on results from 7 and 8 TeV running. This is sufficient for
the data comparisons needed to illustrate the theoretical machinery developed here.

The Black Book of Quantum Chromodynamics: A Primer for the LHC Era. John Campbell, Joey Huston, and Frank Krauss.
© John Campbell, Joey Huston, and Frank Krauss 2018. Published in 2018 by Oxford University Press.
DOI 10.1093/0s0/9780199652747.001.0001



2 Introduction

1.1.2 The quest for the Higgs boson — and beyond
1.1.2.1 Finding the Higgs boson

The LHC was designed as a discovery machine, with a design centre-of-mass energy a
factor of seven larger than that of the TEVATRON. This higher collision energy opened
up a wide phase space for searches for new physics, but there was one discovery that
the LHC was guaranteed to make; that of the Higgs boson, or an equivalent mechanism
for preventing WW scattering from violating unitarity at high masses.

The Higgs boson couples directly to quarks, leptons and to W and Z bosons, and
indirectly (through loops) to photons and gluons. Thus the Higgs boson final states
are just the building blocks of the SM with which we have much experience, both at
the TEVATRON and the LHC. The ATLAS and CMS detectors were designed to find the
Higgs boson and to measure its properties in detail.

The cross-section for production of a Higgs boson is not small. However, the final
states for which the Higgs boson branching ratio is large (such as bb) have backgrounds
which are much larger from other more common processes. The final states with low
backgrounds (such as ZZ* — ¢t/~{t¢~) suffer from poor statistics, primarily due
to the Z branching ratio to leptons. The Higgs— <y final state suffers from a small
branching ratio and a large SM background. Thus one might not expect this final state
to be promising for a Higgs boson search. However, due to the intrinsic narrow width
of the Higgs boson, a diphoton signal can be observable if the experimental resolution
of the detector is good enough that the signal stands out over the background.

The measurable final states of the Higgs boson decays were further subdivided into
different topologies so that optimized cuts could be used to improve on the signal-
to-background ratio for each topology (for example, in ATLAS the diphoton channel
was divided into 12 topologies). The extracted signal was further weighted by the
expectations of the SM Higgs boson in those topologies. In this sense, the Higgs boson
that was discovered in 2012 was indeed the Standard Model Higgs boson. However, as
will be discussed in Chapter 9, detailed studies have determined the properties of the
new particle to be consistent with this assumption.

1.1.2.2 The triumph of the Gauge Principle

The discovery of the Higgs boson by the ATLAS and CMS collaboration, reported in
July 2012 and published in [15, 368], is undoubtedly the crowning achievement of the
LHC endeavour so far. It is hard to overestimate the importance of this discovery for
the field of particle physics and beyond.

The Higgs boson is the only fundamental scalar particle ever found, which in itself
makes it unique; all other scalars up to now were bound states, and the fundamental
particles found so far have been all either spin-1/2 fermions or spin-1 vector bosons.
This discovery is even more significant as it marks a triumph of the human mind: the
Higgs boson is the predicted visible manifestation of the Brout—Englert—Higgs (BEH)
mechanism [516, 601, 619-621, 675], which allows the generation of particle masses in
a gauge-invariant way [580, 835, 888|. Ultimately, this discovery proves the paradigm
of gauge invariance as the governing principle of the sub-nuclear world at the smallest
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distances and largest energies tested in a laboratory so far. With this discovery a
50-year-old prediction concerning the character of nature has been proven

The question now is not whether the Higgs boson exists but instead what are
its properties? Is the Higgs boson perhaps a portal to some new phenomena, new
particles, or even new dynamics? There are some hints from theory and cosmology
that the discovery of the Higgs boson is not the final leg of the journey.

1.1.2.3 Beyond the Standard Model

By finding the last missing particle and thereby completing the most accurate and
precise theory of nature at the sub-nuclear ever constructed, the paradigms by which
it has been constructed have proved overwhelmingly successful. Despite this there are
still fundamental questions left unanswered. These questions go beyond the realm of
the SM, but they remain of utmost importance for an even deeper understanding of
the world around us.

Observations of matter — Earth, other planets in the Solar System or beyond,
other stars, or galaxies — suggest that the symmetry between matter and anti-matter
is broken. This is a universe filled by matter and practically devoid of anti-matter.
While naively there is no obvious reason why one should be preferred over the other,
at some point in the history of the Universe — and presumably very early — this
asymmetry had to emerge from what is believed to have been a symmetric initial state.
In order for this to happen, a set of conditions, the famous Sakharov conditions [710,
834| had to be met. One of these intricate conditions is the violation of CP, which
demands that the symmetry under the combined parity and charge-conjugation (CP)
transformation must be broken. Experimentally, the existence of C'P violation has
been confirmed and is tightly related to the existence of at least three generations
of matter fields in the SM. Due to the BEH mechanism, particles acquire masses,
and their mass and electroweak interaction eigenstates are no longer aligned after
EWSB. The existence of a complex phase in the CKM matrix, which parametrizes the
interrelation between these two set of eigenstates, ultimately triggers C'P violation in
the quark sector. However, the amount of C'P violation established is substantially
smaller than necessary to explain how the universe evolved from an initial symmetric
configuration to the matter-dominated configuration seen today [358].

Likewise, the existence of dark matter (DM) is now well established, first evidenced
by the rotational curves of galaxies [831]. DM denotes matter which interacts only very
weakly with normal matter (described by the SM) and therefore certainly does not
interact through electromagnetism or the strong nuclear force. Despite numerous at-
tempts it has not been directly detected. DM interacts through gravity and thereby
has influenced the formation of large-scale structures in the Universe. Cosmological
precision measurements by the WMAP and PLANCK collaborations [125, 623, 862] con-
clude that dark matter provides about 80% of the total matter content of the Universe.
This in turn contributes about 25% of the overall energy balance, with the rest of the
energy content of the Universe provided by what is known as dark energy (DE), which
is even more mysterious than DM. The only thing known is that the interplay of DM
and DE has been crucial in shaping the Universe as observed today and will continue
to determine its future. One possible avenue in searches for DM particles at collider ex-
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periments is that they have no coupling to ordinary matter through gauge interactions
but instead couple through the Higgs boson.

These examples indicate that the SM, as beautiful as it is, will definitely not provide
the ultimate answer to the questions concerning the fundamental building blocks of the
world around us and how they interact at the shortest distances. The SM will have to be
extended by a theory encompassing at least enhanced CP violation, dark matter, and
dark energy. Any such extension is already severely constrained by the overwhelming
success of the gauge principle: the gauge sector of the SM has been scrutinized to
incredibly high precision, passing every test up to now with flying colours. See for
example [179] for a recent review, combining data from e~e* and hadron collider
experiments. The Higgs boson has been found only recently, and it is evident that this
discovery and its implications will continue to shape our understanding of the micro-
world around us. The discovery itself, and even more so the mass of the new particle
and our first, imprecise measurements of its properties, already rule out or place severe
constraints on many new physics models going beyond the well-established SM [515].

Right now, we are merely at the beginning of an extensive programme of precision
tests in the Higgs sector of the SM or the theory that may reveal itself beyond it. It
can be anticipated that at the end of the LHC era, either the SM will have prevailed
completely, with new physics effects and their manifestation as new particles possibly
beyond direct human reach, or alternatively, we will have forged a new, even more
beautiful model of particle physics.

1.1.3 LHC: Accelerator and detectors
1.1.3.1 LHC, the machine

The LHC not only is the world’s largest particle accelerator but it is also the world’s
largest machine, at 27 km in circumference. The LHC is a proton-proton collider (al-
though it also operates with collisions of protons on nuclei, and nuclei on nuclei),
located approximately 100 m underground and straddling the border between France
and Switzerland. The LHC occupies the tunnel formerly used for the LEP accelerator
in which electrons and positrons collided at centre-of-mass energies up to 209 GeV.
The LHC contains 9593 magnets, including 1232 superconducting dipole magnets, ca-
pable of producing magnetic fields of the order of 8.3 T, and a maximum proton beam
energy of 7 TeV (trillion electron-volts), leading to a maximum collision energy of 14
TeV. Thus far, the LHC has run at collision energies of 7 TeV (2010, 2011), 8 TeV
(2012) and 13 TeV (2015,2016), greatly exceeding the previous record of the Fermi-
lab TEVATRON of 1.96 TeV.! The large radius of the LHC is necessitated because of
the desire to reach as high a beam energy as possible (7 TeV) using dipoles with the
largest magnetic fields possible (in an accelerator). Running at full energy, the power
consumption (including the experiments) is 750 GWh per year. At full power, the LHC
will collide 2808 proton bunches, each approximately 30 cm long and 16 microns in
diameter and containing 1.15 x 10'! protons, leading to a luminosity of 1034cm=2/s
and a billion proton-proton collisions per second. The spacing between the bunches is
25 ns leading to collisions occurring every 25 ns; thus, at full luminosity there will

1Unlike the LHC, the TEVATRON was & proton-antiproton collider.



