


Handbook
Engineering
in
Medicine and Biology

Editors:

David G. Fleming

Professor, Biomedical Engineering in Pediatrics
Case Western Reserve University
Cleveland, Ohio

Barry

Associate Profess

;;:‘
rf%ctrical Engin%? 74
Director, Clinic

Cleveland Stﬁi.§r4s1ﬂ‘:ggr

Cleveland, Ohio

(RBEB M)

Published by

cREPRESS

. CRC PRESS, Inc.
18901 Cranwood Parkway - Cleveland, Ohio 44128




Library of Congress Cataloging in Publication Data
Main entry under title:
CRC handbook of bioengineering in medicine and biology

Bibliography: p.

Includes index.

1. Biomedical engineering - Handbooks, manuals, cte.
2. Bioengineering — Handbooks, manuals, ctc. I. Fleming,
David G., 1926 - 1. l'einberg, Barry N. 1. Title:
Handbook of bioengineering in medicine and biology.
[DNLM: 1. Biomedical engineering. QT34 H236]
R856.C17 610°.28 75-44222
1SBN 0-87819-285-9 (v. 1)

This book represents information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide varicty of references are listed.
Every reasonable effort has been made to give reliable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for the consequences of their
use.

All rights reserved. This book, or any parts thercof, may not be reproduced in any torm without
written consent from the publisher.

O 1976 by CRC Press, Inc.

International Standard Book Number
0-87819-285-9 (v. 1)
0-87819-284-0 Complete Set

Library of Congress Card Number 75-44222
Printed in the United States



o EppseyTaTE

T

- ATREY, E?ﬁﬁﬁ%ﬁ*?ﬂh EE%?BT%—*@’*‘

F’iB’JTﬁ&:‘,Wﬁ?’ﬁ‘lﬁﬁ;ﬁ‘%,%*mﬁgﬁﬁaﬁ?ﬁﬁﬂﬂo, t
LR @%L@T—W?A?& ’ﬁ'é@%!&&!—*ﬂd&éﬁ%ﬁ—r—ﬂﬁ&&"‘
| Wl ART m}\ﬁ&%&

Bk: Q4m¥mE fbiﬁﬁﬂﬁﬁlfﬁ}ﬂ (ﬂﬁ‘?; Eﬁiﬂﬁ 3
RER), OB THERPILEES, FADVOER NS, ®
BRAEEREBR, £ LRFIEUERSR, @40y FRIEZE DY
 BHERREY, ONBNYEER, ®AKLHHEE, @ EY,

: E'—'ﬁ‘-’ﬁﬁ; @’-t%@:r"’r EJJQIIFE> Olf‘#ﬁﬁﬂﬂ?ﬁﬂi“*
'F‘Fﬁ,@m%o BaEtH Nﬁ@?ﬁ&f(ﬁﬁ?‘glﬁa




FOREWORD

As an identifiable professional activity, biomedical engineering is a shade more than 20
years old, and many of the “old timers” who gave form and substance to the field are still
far from retirement and continue to con}ribute to the literature.

The Annual Conference on Engineering in Medicine and Biology has just published its
28th Proceedings and those of us fortunate enough to have participated in, or have access
to its early records, can only marvel at the awesome growth and current vitality of the
meeting. In 15 years, its sponsorship has grown from 3 engineering societies, the IRE,
ISA, and AIEE to 24 Constituent Associations representing a broad spectrum of
engineering and medical societies.

The earliest federally funded training programs are celebrating their 18th birthday and
formal educational programs now exist in over 100 institutions from community colleges
to professional schools.

Educational opportunities exist leading to associate degrees for equipment technicians,
to the B.S. degree in Bioengineering, to the M.S. degree in Clinical or Biomedical
Engineering, and to the doctaorate in Biomedical Engineering. Programs leading to the
simultaneous awarding of the M.D. plus a Ph.D. in engineering are available in a number
of universities. This picture presents a sharp contrast from the situation in 1960 when
there were no formally trained biomedical engineers and everyone working in the field
was either a retreaded physiologist, a diverted physician, or an engineer in search of new
challenges. The first book in the field was yet to appear and the only regularly published
journal in the field was the Transactions of the Group on Engineering and Medicine
biology of the IEEE. At the present time the number of journals, textbooks, and
monographs in the field are virtually too numerous to count.

This rapid growth has not been without problems for the student and senior
investigator alike. Data may appear in a wide variety of publications, some only remotely
related to biomedical engineering. The problem, while distressing, is not difficult to
understand since biomedical engineering in its broadest definition includes all activities in
which there is significant interfacing between the basic and clinical biomedical sciences
with engineering theory and practice. ,

Academically, there is still little agreement on the content of the “‘educational core” at
the undergraduate level or indeed if one exists at all. Graduate programs varying
enormously in content and structure are part of the rubric of biomedical engineering, and
post-educational professional activities may be equally diverse.

For example, recent publications by one of the editors include: 1) the application of
modern systems thcory to modeling neuromuscular control mechanisms; 2) the design,
fabrication, and clinical evaluation of plastic nasal canula used for treating respiratory
distress in premature infants. These two illustrations are presented because they
demonstrate two extremes of the application of engineering to biology and medicine.
Both examples represent instances in which either a method of engineering analysis or a
method of modern technology is used 1) for the understanding of biological systems or 2)
to solve an important problem in patient care.

A field whose scope includes nasal prongs and visual perception, ground fault detectors
and cardiovascular fluid mechanics, hip pins and microcomputers is not easily organized
into a coherent body of knowledge. The editors and contributors to the handbook share
the belief that a body of information almost unique to biomedical engineering exists at
the present time and that a project to bring much of it together is worth an investment of
time and energy. .

In Volume I, concepts of information, control, materials, mechanics and measurement
are present. Volume II will be concerned with applications to instrumentation, clinical
engineering, patient monitoring, and prostheses. Successive volumes in the series are to be



devoted to specific topics and will coherently and concisely represent the state of
knowledge in a given area at the time of publication. If the handbook fulfills its objective,
it will to the extent possible provide a data base useful to the student and professional in
biomedical engineering and be a source of information for investigators and practitioners
in the allied health care and engineering fields.

David Fleming
Barry Feinberg

_ Cleveland, Ohio
November 1975
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PHILOSOPHICAL, HISTORICAL AND THEORETICAL
CONSIDERATIONS OF REGULATION AND CONTROL IN
BIOLOGY AND MEDICINE

Robert Rosen

I. INTRODUCTION

Regulation and control processes are at the heart of the basic questions of biology and
medicine. The present article is intended to provide a brief review of the presently
employed techniques for the modelling of regulatory and control mechanisms, illustrated
by some typical biomedical applications of these techniques. This material will be
presented in Section II. In Section III, we will undertake a critical review of these
techniques in the light of their historical and philosophical underpinnings, and suggest
some directions for further development.

IL. THEORETICAL STUDY OF REGULATORY AND
CONTROL MECHANISMS IN BIOLOGY AND MEDICINE

1. Systems, States and Dynamics

We will here develop the basic concepts and terminology required for an understanding
of biological control and regulatory processes.

For our purposes, a system of interest will merely comprise some isolable aspect of the
world which we wish to study. Thus, for example, a typical system might be an individual .
organism, or a population of such organisms, or a cell or organ of an organism. These
represent systems which can be separated physically from their natural environment. We
might also be interested in studying systems which cannot be physically isolated from the
organism, but which form a conceptual unity capable of separate study, such as a pool or
compartment representing the distribution of a particular metabolite in an organism. We
shall find many examples of both kinds of systems as we proceed. )

The study of such systems takes many forms, as we shall see, but underlying all of
them are two basic notions:

a. the state (or instantaneous state) of the system of interest, which involves the
specification of what our system is like at an instant in time; .

b. the dynamics of the system, which specifies how the instantaneous state changes
in time as a function of the forces or inputs imposed upon the system.

Let us begin with the concept of state. In practice, the information which we can
obtain about our system at an instant of time typically comes from allowing our system
to interact with an appropriate kind of measuring instrument. The reading obtained from
that instrument as a result of this interaction can be represented in the form of a
numerical value, and this number thus conveys some information about the state of our
system at the instant the measurement was made. A second such measurement, using a
different measuring instrument, will in general convey more information about the state
than a single one; a third measurement will convey still more. In this way, it is reasonable
to identify the state of the system at an instant of time with the set of all numerical
values which arise by interacting our system at the instant in question with all possible
measuring instruments. Of course, this is an idealization, but for the moment it is
plausible to regard the states of any system of interest as being represented or encoded by
sets of numbers; these numbers in turn correspond to the values of observable quantities
which are measured on the system at the instant in question.
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Of course, much of this idealized information regarding the state of our system at an
instant of time will be redundant; the values arising from some of the measurements we
make may be functions of the values of other measurements, and hence are determined
when the values of those others are known. Thus, we are led to seek the most
parsimonious kind of state description, utilizing only sets of measurable quantities which
have the following properties:

a. Every measurable quantity pertaining to the system is to be a function of those
entering into our state description;

b. None of the quantities entering into our description is to be a function of the
other quantities in the description.

The quantities entering into such a minimal description of the states of our system at an
instant of time are called a set of state variables for our system. In general there are many
possible sets of state variables. : '

- Systems may be classified by the size of the set of state variables necessary to
characterize their instantaneous states. The simplest kinds of systems are those which
require only a finite set of state variables. For these systems, then, a state can be
represented by an n-tuple of real numbers, where n is the (finite) number of state
variables required for the most parsimonious specification of the states of the system. In
this way, the set of states of such a system can be identified with some subset S of
Euclidean n-dimensional space: by the familiar mathematical abus de langage, this subset
S is called the state space of our system.

_ Thus, for example, a system of N mechanical particles in space is known from
nié(:hanics to be completely represented by a state space (called, in mechanics, a phase
space) of 6N dimensions; a set of state variables for the system comprises the 3N
components of displacement of each of the particles in the three spatial directions from
some origin of spatial coordinates, and the corresponding 3N components of momentum
or velocity. A system of N interacting chemical species may be represented by an
N-dimensional state space, in which the state variables are the concentrations of the
individual reactants. In this last example, it should be noted that not every mathematical-
ly available N-tuple of numbers can correspond to a state of the system (since
concentrations must be nonnegative), and that therefore the set of those N-tuples which
can in fact represent states must be carefully specified.

More complex systems cannot be represented by any finite set of state variables. For
example, in a chemical reaction system which is inhomogeneous and spatially extended,
merely knowing the total concentrations of the reactants in the system is not in general
adequate. For such a system, we would have to specify the concentrations of the
reactants at each point in the reaction vessel. The treatment of such spatially extended, or
distributed systems, raises severe technical difficulties, but the basic strategy of approach
to-them is the same as that for finitely characterizable systems. Therefore we shall stress
the treatment of the finite systems in this article.

* Having decided on how to characterize our system at an instant of time (i.e., having
speeified an appropriate state space S) we must now turn our attention to considering
how our states change in time. To do this, we shall exploit the mathematical properties of
the state space, which we remember is a subset of Euclidean n-dimensional space. As
such, it possesses a rich mathematical structure, including a topology (which allows a
discussion of continuity or continuous ehange of state), a metric (which allows us to
speak of states being close to each other) and, most importantly, a differentiable
structure, which allows us to speak of time derivatives of functions defined on the state
space; most importantly, of the state variables themselves.

“Let us suppose that our system is in the state (x;(t,), x2(ty). ..., x4(t,)) at an



instant t_, where x;, ..., X, represent a set of state variables for the system. To speak
about the change of state of the system, it is necessary to specify how fast the state
variables are changing when the system is in the given state. That is, we wish to talk about
the rates of change of the state variables, represented intuitively by the derivatives dx;/dt,
evaluated in the given initial state.

Here again, we may make a classification of different kinds of systems. The simplest
assumption we can make is the following: the rates of change of the state variables,
evaluated in a state, depends only on that state. That is, in the nelghborhood of any state,
we could write a set of n equations of the form_

dxi .
a—=fi(xl,...,xn), i=1...,n. 1)
Here the functions f,, f,, ..., f, represent the mode of functional dependence of the
rates of change of the state variables on the state. We should notice that these equations,
as we have motivated them, are meaningful only locally, in the vicinity of an individual
state; there is no reason a priori why the same set of functions f, , . . . , f,, should specify
the rates of change of the state variables in the neighborhood of some other state remote
from the first. Nevertheless, it is intuitively clear that we can “patch together” such
locally valid functions to get functions f;, ..., f, valid over the entire state space, and
we may therefore just as well assume that equations of the form (1) hold globally.
Systems with a finite set of state variables whose change of state is specified by systems
of equations of the form (1) are typically called dynamical systems. They provide the
most accessible framework for the study of control and regulation in all kinds of systems,
and exhibit the basic ideas most clearly. Therefore in what follows, we shall emphasize
these systems in our study. '

Naturally, we can make many other kinds of assumptions about the manner in which
the rates of change of the state variables depend on the states. We could assume, for
example, that the rate of change of a state variable in a state depends on the entire past
history of the system leading up to that state, or on some part of that history. Such
systems could be meaningfully said to possess a memory. In systems of the form (1), on
the other hand, the present rate of change of state depends only on the state, and not on
any prior (or subsequent) states; therefore these systems are memoryless. Nevertheless, as
we shall see, the systems of the class (1) are sufficiently rich so that many important
phenomena can be represciited in them.

The equations (1), which we shall assume to be satisfied by all systems with which we
deal, are called the dynamical equations or equations of motion of the system. They are
completely determined by the functions f,, f,, .. ., f;, which specify the dependence of
rate of change of state upon state. Intuitively, these functions f; represent the forces
acting on the system, causing the states to change. Such equations cannot be directly
obtained by observations of the system, but must be written down on the basis of general
principles. For instance, in a system consisting of N material particles, the dynamical
equations are written down in accordance with Newton’s laws of motion. In a chemical
kinetic system, dynamical equations can be written down from an assumed stoichiometry
of the reactions involved, together with the Law of Mass Action. Such a set of dynamical
equations represents a model of the system of interest, and we attempt to infer properties
of the real system from properties of the model. If the predictions obtained from the
mode! are verified in the real system, the model is satisfactory for our purposes; otherwise
we must change the model by revising the dynamical laws (i.e., altesing our specification
of the forces acting on the system), by making more complex assumptions regarding the
dependence of rate of change of state upon state, by enlarging the state description, or by
any combination of the above.
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Let us now take systems of the form (1) as our point of departure and consider their
properties in more detail. The fundamental kind of prediction we would like to make
from such a representation is to specify the state of our system at any time t, knowing
the present state. If we assign a state to each time instant t, it is clear that we will obtain a
curve, which we may designate as C(t), which winds through the state space in some

_ fashion. Knowing this curve, we could read off the corresponding state at any time we

wished. Curves C(t) of this character are called system trajectories. Thus, the prediction
problem reduces to the determination of the system trajectories. This in turn involves the
specification of each of the state variables x; as an explicit function of time, x;(t). Indeed,
any system trajectory is just an n-tuple of such functions:

C) = 2 X, (0, X, (), - . . xn(t)t.

In order to solve the prediction problem, then, we must determine the functions x;(1),
and this obviously requires an integration of the dynamical equations (1).

It is worthwhile to pause at this point to give a geometrical interpretation of these
concepts. Let us suppose that the state space 8 is two-dimensional; i.e., a subset of the
plane. Let the state variables be denoted by x,, x,, and let us consider the time t as the
independent variable. The dynamical equations then take the form

dx,

F f,(x,,x,)

dx, -t

rrag 2 Xy, X,). . @

Solutions of this system, obtained by integration of these equations, will consist of pairs
of functions x, (t), x, (t). Consider the following diagram:

x, = x,(t) \x, =x,(t)
Jxi(ty)

/xz(to) )

X, x

x,(t,), v,(t,))

Cly)

FIGURE 1. Diagrammatic representation of the relation between solutions and trajy M



Here the function x; = x,(t) is represented as a curve in the (x, ,t) plane; the function x,
= X, (t) is represented as a curve in the (x,,t) plane. The corresponding system trajectory
is obtained as a curve in the x;, x, plane as indicated: for each value of t, the
corresponding values x, (t), x2 (t) are read off the solution curves; these values uniquely
determine a point (i.e., a state of the system) in the (x,, x,) plane. We shall consider
some explicit examples shortly when we come to deal with linear systems.

The mathematical properties of the dynamical equations (1) are in accord with the
intuitive picture we have given. Under very weak assumptions on the functions f;, ..., f,
(namely, that they be bounded and uniformly continuous on the state space), then the
basic existence theorem for dynamical systems' holds that through each staté there
passes a trajectory. In the presence of a further weak condition (Lipschitz condition') it
can be stated that through every state there passes exactly one trajectory. This unique
trajectory property is a statement of causality in these systems; two trajectories cannot
cross,-and hence every state has only one past which could give rise to it, and only one
future which can emanate from it (assuming always, of course, that the forces on the
system, as expressed in the dynamical equations, are not changing).

2. Stability

We now approach that aspect of dynamical system theory which is crucial from the
standpoint of regulation. For our purposes, regulation shall be regarded as an autonomous
system property related to the response of the system to a perturbation of state. Th-
appropriate machinery for discussing such regulatory properties lies in the notion of the
stability properties of the system, and we now turn to a discussion of these properties.

Stability refers to a relation between a given trajectory and those trajectories which
are, in a certain sense, “nearby”. Let us suppose we are given a trajectory C(t) of a system
(1). At an instant ty, let us modify, or perturb, the state of the system, so that instead of
the system being in the state C(to), it is in some other state C'(t, ) close to C(ty). By the
unique trajectory property, the new state C'(to) determines an entire trajectory, which
we may denote by C'(t). Stability theory is concerned with the asymptotic behavior of
the distances between C(t) and C'(t) for t > to; i.e., with the discrepancy between what
the unperturbed behavior of the system would be, and the actual behavior of the
perturbed system.

There are several possibilities:

(a) ymIIC(t) C'(t)II-0 for all “nearby” trajectories C'(t). In this case, the trajectories

C'(t) arising by perturbation all approach the unperturbed trajectory C(t). In this case, we
say that C(t) is asymptotically stable: Such a trajectory possesses inherent regulatory
properties, in that the effects of any perturbation of state will become vanishingly small.
This situation is diagrammed in Figure 2.

®) llmllC(t) ~ C'(t)li<M “for all “nearby” trajectories. In this case, the perturbed

trajectones do not return to the unperturbed trajectory, but they do ot get too far
away. This is a kind of neutral stability of the unpertubed trajectory C(t), a weaker
regulatory property than asymptotic stability. Thjs situation is diagrammed in Figure 3.

(é)‘limIIC(t) - C'(t)ll>=ofor at least one “nearby” trajectory. In this case C(t) is said to
t—> oo

be unstable. We distinguish between the case in which only some of the nearby
trajectories diverge from C(t) (conditional instability, ¢f, Figure 4), and the case in which
!l nearby trajectories diverge from C(t) (asymptotic instability, Figure 5).

Asymptotic stability has been invoked to account for many kinds of biological
regulatory mechanisms. For instance, Waddington? has invoked the term homeorrhesis to
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FIGURE 2. Behavior in the neighborhood of an asymptotically stable trajectory.

7

FIGURE 3. Behavior in the neighborhood of a neutrally stable trajectory.




FIGURE 4. Behavior in the neighborhood of a conditionally unstable trajectory.

“ g

FIGURE 5. Behavior in the neighborhood of an asymptotically unstable trajectory. .. -

1
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account for the persistence of developmental pathways in embryology, despite
experimental interference with the developing embryo, and pointed out that such
"homeorrhesis is an automatic consequence of an asymptotically stable developmental
trajectory. Similar arguments can be invoked for related phenomena, such as the healing
of wounds® and regeneration.?
In order to approach this last problem, let us shift consideration to a particular class of
special trajectories of systems like (1). If we set the rates of change of the state variables
equal to zero in (1), we obtain a set of algebraic equations of the form

fi(xp - x) =0, i=L...,n, ' 3)

The solutions of these equations (if any'\'égdsg)%#épréknt states in which none of the state
variables are changing. Thus a system placed’ initially in such a state will remain there
forever. Such states therefore represent entire trajectories (though of a degenerate kind),
and are referred to as the steady states of the system. As entire trajectories, it makes sense
to talk about the stability properties of steady states, and indeed all our definitions carry
over directly, and we can talk about asymptotically stable, neutrally stable, or unstable
steady states. Intuitively, an asymptotic steady state is one to which the system will -
return following a perturbation away from it; a neutrally stable steady state is one from
which a perturbed trajectory will not diverge too far, and an unstable steady state is one
which diverges further and further from the steady state as time proceeds.

The steady states of a system are important for many reasons. One reason not
commonly appreciated is the fact that, given a dynamical system of the form (1), the
stability properties of a trajectory C(t) of that system can be reduced to the problem of
the stability of a steady state of an associated system.5 The basic idea here is to contract
the trajectory C(t) to a point, while maintaining the distances between C(t) and the
neighboring trajectories. Thus the stability of steady states occupies a central conceptual
role in the theory of stability, in addition to its unportance in determining the properties
of individual model systems.

As we shall see later (Section Il 8) there is a close relation between the asymptotic .
stability of a steady state and the theory of feedback-control systems regulated by a
set-point. Indeed, feedback control can be regarded as modifying the dynamics of a
controlled system (by coupling to another system, or controller) in such a way that a
particular desired state becomes asymptotically stable. Around such a state, the system
may be said to exhibit homeostasis. Consequently, most attention in control theory has
been paid to systems exhibiting such asymptotic stability, at least in a region surrounding
the steady state.

However, biological regulation often crucially involves instability. For instance, models
proposed by Rashevsky® and Turing” for the generation of inhomogeneities proceed by
forcing a steady state, corresponding to a homogeneous situation, to become condi-
tionally stable, so that random perturbations away from that steady state become
magnified by the system. This amounts to a positive feedback situation, in which the
distance of the state of the perturbed system from the homogeneous steady state grows
autocatalytically. Excitatory phenomena such as nerve and muscle excitation .can be
likewise understood in terms of instability.®

Neutral stability is a special case of a situation in whnch certam solutions of the system
(1) are periodic, so that the corresponding trajectories are closed. Such closed trajectories,
like steady states, represent a limiting behavior of trajectories around them (it is a
theorem that a bounded trajectory can-approach only a steady state or a closed
trajectory) and are generally called limit cycles. A stable limit cycle is thus one which is
approached asymptotically by all nearby trajectories. Such limit cycles are important in
biological regulation because they can represent potential clocks for thythmic or periodic



