Cengage Advantage

Books

Starr | Evers | Starr

Biology

Concepts and Applications

SEVENTH EDITION

Cecie Starr | Christine A. Evers | Lisa Starr

Biology

A Human Emphasis

SEVENTH EDITION

Biology: A Human Emphasis, Seventh Edition Cecie Starr, Christine A. Evers, Lisa Starr

Publisher: Jack Carey and Yolanda Cossio

Managing Development Editor: Peggy Williams

Assistant Editor: Jessica Kuhn

Editorial Assistant: Rose Barlow

Technology Project Manager: Kristina Razmara

Marketing Manager: Kara Kindstrom

Marketing Communications Manager:

Stacy Pratt

Project Manager, Editorial Production:

Andy Marinkovich

Creative Director: Rob Hugel

Art Director: John Walker

Print Buyer: Karen Hunt

Permissions Editor: Bob Kauser

Production Service:

Grace Davidson & Associates

Text Designers:

Chris Keeney, Yvo Riezebos, John Walker

Photo Researcher:

Myrna Engler Photo Research Inc.

Copy Editor: Anita Wagner

Illustrators:

Gary Head, ScEYEnce Studios, Lisa Starr

Cover Designers: Dare Porter, John Walker

Compositor: Lachina Publishing Services

Cover Image: Common flying dragon (*Draco Volans*) gliding by extending ribbed wings; native to Indonesia, India, and Philippine Islands (*Stephen Dalton/Minden Pictures*).

© 2008, 2006 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to permissionrequest@cengage.com

ExamView® and ExamView Pro® are registered trademarks of FSCreations, Inc. Windows is a registered trademark of the Microsoft Corporation used herein under license. Macintosh and Power Macintosh are registered trademarks of Apple Computer, Inc. Used herein under license.

Library of Congress Control Number: 2007932374

Advantage Edition

ISBN-13: 978-0-495-11998-2

ISBN-10: 0-495-11998-9

Brooks/Cole

10 Davis Drive Belmont, CA 94002-3098 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com

Purchase any of our products at your local college store or at our preferred online store **www.ichapters.com**

Biology

A Human Emphasis

SEVENTH EDITION

Preface

In preparation for this revision, we invited instructors who teach introductory biology for non-majors students to meet with with us and discuss the goals of their course. Nearly always, their goal was something like this: "To familiarize students with the way that science works and provide them with the tools they need to make well-informed choices as consumers and as voters." This makes sense. Most students who use this book will not be biologists, and many will never take another science course. Yet they certainly need to make decisions that require an understanding of the process of science and of basic biological principles.

We provide these future decision-makers with an accessible introduction to science. Throughout this edition, we emphasize that biology is not a body of facts, but rather an ongoing endeavor carried out by a diverse community of people. We underscore this point by describing current research and providing photos and videos of the scientists who do it. We explain not only what is known, but also how it was discovered, and how our understanding has changed over time. At the same time, we highlight the role of longstanding scientific theories, most notably the theory of evolution, which is a unifying theme in this book.

We revised every page of text to make it as straightforward and clear as possible, keeping in mind that English is a second language for many students. We added new tables to summarize important points and streamlined figures to eliminate unnecessary complexity.

CHANGES FOR THIS EDITION

Links to Key Concepts New to this edition are tools that link concepts within and between chapters. These tools reinforce the concept that each new idea in science rests on a foundation of other ideas.

Every chapter introduction has a section-by-section list of *Key Concepts*, each with a simple title. We repeat the titles at the top of appropriate text pages as ongoing reminders of the chapter's conceptual organization. A brief list of *Links to Earlier Concepts* helps remind students of relevant concepts that they encountered in previous chapters. For instance, students are advised that before reading about neural function, they may wish to scan an earlier chapter section on active transport. Icons are repeated in text page margins.

Media-Integrated Summaries We have always offered a wealth of online media for students. With this edition, we have made it easier for students to determine which online material supports each section. We have integrated information about the relevant animations, tutorials, and videos into the section summaries.

Chapter-Specific Changes Every chapter was extensively revised for clarity; this edition has 350 new photos and almost 170 new or updated figures. A page-by-page guide to new content and figures is available upon request, but we summarize the highlights here.

- *Chapter 1, Invitation to Biology* New essay about discovery of new species. Greatly expanded coverage of critical thinking and the process of science.
- *Chapter 2, Life's Chemical Basis* Chemistry of bonding revised to include electronegativity; new pH art.
- Chapter 3, Molecules of Life New art demonstrating protein structural organization; other art reorganized.
- Chapter 4, Cell Structure and Function Microscopy section updated; plasma membrane art simplified; new focus section on biofilms; cytoskeleton section reworked.
- Chapter 5, Ground Rules of Metabolism Energy and metabolism sections reorganized and rewritten; much new art, including molecular model of active site.
- Chapter 6, Where It Starts—Photosynthesis New essay on global warming emphasizes role of photosynthesis in the cycling of atmospheric carbon dioxide.
- Chapter 7, How Cells Release Chemical Energy All art showing metabolic pathways revised and simplified.
- Chapter 8, How Cells Reproduce Updated micrographs of mitosis; cancer section updated.
- Chapter 9, Meiosis and Sexual Reproduction Opener revised to include Red Queen hypothesis; new essay on evolutionary connection between mitosis and meiosis.
- Chapter 10, Observing Patterns in Inherited Traits Updated essay on cystic fibrosis; new figures for coat color genetics in dogs, and environmental effects on Daphnia phenotype.
- Chapter 11, Chromosomes and Human Inheritance Chapter reorganized; expanded discussion and new figure on the evolution of chromosome structure.
- Chapter 12, DNA Structure and Function New opener essay on pet cloning; adult cloning section updated.
- Chapter 13, From DNA to Protein New, simplified figures for transcription and translation.
- *Chapter 14, Controls Over Genes* Chapter reorganized; eukaryotic gene control section rewritten; updated X chromosome inactivation photos; new lac operon art.
- Chapter 15, Studying and Manipulating Genomes Chapter reorganized; gene library and PCR section rewritten; genetic engineering sections updated and expanded.
- Chapter 16, Evidence of Evolution Heavily revised; reorganized with Chapter 17 to emphasize evidence-based thinking. Revised opener essay on evidence leading to inference; updated geologic time scale; comparative morphology section rewritten with new figure; comparative embryology photo series added; cladistics section rewritten; new, updated tree of life.
- Chapter 17, Processes of Evolution Heavily revised; reorganized with chapter 16 to emphasize evolution as a process. Revised rats/warfarin essay; sections on sexual selection, reproductive isolation, sympatric speciation, and macroevolution rewritten; examples added: directional selection in the peppered moth, reproductive isolation in stalk-eyed flies, genetic drift in flour beetles, mechanical isolation in sage, sympatric speciation in palms, and ring species.
- Chapter 18, Life's Origin and Early Evolution Information about origin of agents of metabolism updated. New discussion of ribozymes as evidence for RNA world.

- Chapter 19, Prokaryotes and Viruses New art of viral structure. Herpes virus replication added. New section on discovery of viroids and prions.
- *Chapter 20, Protists—The Simplest Eukaryotes* Figure showing different protist life cycles added. New section about amoebozoans. Fungi now in separate chapter.
- *Chapter 21, Plant Evolution* Plant life cycle diagram added. Whisk fern coverage added. More about ferns. New section about quinoa, the most nutritious plant.
- *Chapter 22, Fungi* New chapter devoted to the fungi. Includes information on chytrids and microsporidians, a separate section for each major fungal group.
- Chapter 23, Animal Evolution—the Invertebrates Improved coverage of animal origins and of crustacean diversity. New section about invertebrate pests and parasites.
- Chapter 24, Animal Evolution—the Vertebrates Updated figure for fish-to-tetrapod limb evolution. Sections on primate and human evolution revised and updated.
- *Chapter 25, Plants and Animals—Common Challenges* More information about plant defensive mechanisms.
- Chapter 26, Plant Tissues Primary structure of roots reorganized; new section on tree rings and past climate.
- Chapter 27, Plant Nutrition and Transport New essay on effects of ozone on plants.
- Chapter 28, Plant Reproduction and Development New section on plant responses to seasonal changes.
- Chapter 29, Animal Tissues and Organ Systems Opener about stem cells updated. Improved coverage of embryonic tissues, development of body cavities.
- *Chapter 30, Neural Control* Chapter reorganized to begin with overview of nervous systems. New sections cover neurotransmitters and the role of neuroglia.
- *Chapter 31, Sensory Perception* New art of vestibular apparatus, image formation in eyes, and accommodation.
- *Chapter 32, Endocrine Control* Chapter reorganized into smaller sections focused on specific glands. New graphic for insulin/glucagon effects. More on diabetes.
- Chapter 33, Structural Support and Movement Improved coverage of joints, clarified discussion of sliding-filament model.
- *Chapter 34, Circulation* Clearer discussion of Rh factor and risks with pregnancy. New art of cardiac muscle.
- *Chapter 35, Immunity* Heavily reorganized, updated to reflect current paradigms, and rewritten to emphasize integrated actions of the immune system. Opener essay updated to include vaccine development; new, simplified art of adaptive immune responses; AIDS section updated.
- *Chapter 36, Respiration* New section about respiration in extreme habitats (high altitude and deep dives).
- *Chapter 37, Digestion and Human Nutrition* Nutritional information and obesity research sections updated.
- *Chapter 38, The Internal Environment* New figure of fluid distribution in the body. Coverage of nephron anatomy and urine formation completely revised.
- Chapter 39, Animal Reproduction and Development The chapter has been shortened by tightening sections about classical embryology and birth defects. New section about female reproductive disorders.

- Chapter 40, Population Ecology Exponential and logistic growth clarified. Effect of fishing on Atlantic cod added.
- Chapter 41, Community Structure and Biodiversity
 Whirling disease in trout, salamander competition study
 added. Updated coverage of succession and stability.
- Chapter 42, Ecosystems New figures for food chain and food webs. Updated greenhouse gas coverage.
- Chapter 43, The Biosphere New section about soils and desertification. New section about rain forests. More on coral reefs and threats to them. More on ocean life.
- Chapter 44, Behavioral Ecology Chapter reorganized and shortened.

Appendix V, Molecular Models New art and text explain why we use different types of molecular models.

Appendix VI, Closer Look at Some Major Metabolic Pathways New art shows details of electron transport chains in thylakoid membranes.

Appendix VIII, Restless Earth—Life's Changing Geologic Stage A new map from NASA summarizes Earth's tectonic and volcanic activity.

Appendix X, A Comparitive View of Mitosis in Plant and Animal Cells A new figure shows the stages of plant and animal mitosis side-by-side for easy comparison.

ACKNOWLEDGMENTS

Thanks to our advisors for their ongoing impact on the book's content. John Jackson, Jean deSaix, David Rintoul, and Michael Plotkin all deserve recognition for their deep commitment to excellence in education. This edition also reflects many influential contributions of the instructors, listed on the following page, who helped shape our thinking. *Impacts/Issues* essays, *Key Concepts*, custom videos—such features are direct responses to their insights from the classroom.

Cengage Learning continues to prove why it is one of the world's foremost publishers; Michelle Julet, thank you again for supporting our ideals and our creativity. Keli Amann and Kristina Razmara created a world-class technology package for both students and instructors. Peggy Williams, with her clarity, humor, intelligence, and patience, has been truly inspiring. Grace Davidson calmly kept us on track and put all of the pieces together, and Andy Marinkovich made sure that production went smoothly. Thanks also to our marketing manager Kara Kindstrom, Paul Forkner in photo research, and Jessica Kuhn and Rose Barlow, our tireless editorial assistants.

It takes a dedicated group of publishing professionals to produce a textbook, yet no listing conveys how this team interacted to create something extraordinary. And thank you, Jack Carey, for being the first to identify the need for features, including student voting, that can further biology education.

CECIE STARR, CHRIS EVERS, AND LISA STARR July 2007

CONTRIBUTORS TO THIS EDITION: INFLUENTIAL CLASS TESTS AND REVIEWS

Brenda Alston-Mills North Carolina State University

Norris Armstrong University of Georgia

Dave Bachoon Georgia College & State University

Andrew Baldwin Mesa Community College

LISA LYNN BOGGS Southwestern Oklahoma State University

Gail Breen University of Texas at Dallas

Marguerite "Peggy" Brickman University of Georgia

David William Bryan Cincinnati State College

Uriel Buitrago-Suarez Harper College

SHARON KING BULLOCK Virginia Commonwealth University

JOHN CAPEHART University of Houston - Downtown

Daniel Ceccoli American InterContinental University

Tom Clark Indiana University South Bend

HEATHER COLLINS Greenville Technical College

Cynthia Lynn Dassler Ohio State University

Carole Davis Kellogg Community College

LEWIS E. DEATON University of Louisiana - Lafayette

Jean Swaim DeSaix University of North Carolina - Chapel Hill

(JOAN) LEE EDWARDS Greenville Technical College

Hamid M. Elhag Clayton State University

Patrick Enderle East Carolina University

Daniel J. Fairbanks Brigham Young University

Amy Fenster Virginia Western Community College

Kathy E. Ferrell Greenville Technical College

Rosa Gambier Suffok Community College - Ammerman

TIM D. GASKIN Cuyahoga Community College - Metropolitano

STEPHEN J. GOULD Johns Hopkins University

MARCELLA HACKNEY Baton Rouge Community College

GALE R. HAIGH McNeese State University

John Hamilton Gainsville State

RICHARD HANKE Rose State Community College CHRIS HAYNES Shelton St. Community College

Kendra M. Hill South Dakota State University

Juliana Guillory Hinton McNeese State University

KELLY HOGAN University of North Carolina

Robert Hunter Trident Technical College

John Ireland Jackson Community College

Thomas M. Justice McLennan College

TIMOTHY OWEN KONEVAL Laredo Community College

Sherry Krayesky University of Louisiana - Lafayette

Dubear Kroening University of Wisconsin - Fox Valley

JEROME KRUEGER South Dakota State University

JIM KRUPA University of Kentucky

Mary Lynn LaMantia Golden West College

KEVIN T. LAMPE Bucks County Community College

Susanne W. Lindgren Sacramento State University

Madeline Love New River Community College

Dr. Kevin C. McGarry Kaiser College - Melbourne

JEANNE MITCHELL Truman State University

Alice J. Monroe St. Petersburg College - Clearwater

Brenda Moore Truman State University

RAJKUMAR "RAJ" NATHANIEL Nicholls State University

Francine Natalie Norflus Clayton State University

ALEXANDER E. OLVIDO Virginia State University

Bob Patterson North Carolina State University

Shelley Penrod North Harris College

Mary A. (Molly) Perry Kaiser College - Corporate

JOHN S. PETERS College of Charleston

MICHAEL PLOTKIN Mt. San Jacinto College

RON PORTER Penn State University

KAREN RAINES Colorado State University

LARRY A. REICHARD Metropolitan Community College - Maplewood JILL D. REID Virginia Commonwealth University

Robert Reinswold University of Northern Colorado

DAVID RINTOUL Kansas State University

DARRYL RITTER Okaloosa Walton Junior College

Amy Wolf Rollins Clayton State University

ROBIN SEARLES-ADENEGAN Morgan State University

Julie Shepker Kaiser College - Melbourne

RAINY SHOREY Illinois Central College

Eric Sikorski University of South Florida

ROBERT (BOB) SPEED Wallace Junior College

Tony Stancampiano Oklahoma City Community College

Jon R. Stoltzfus Michigan State University

Peter Svensson West Valley Collegee

JEFFREY L. TRAVIS University at Albany

Nels H. Troelstrup, Jr. South Dakota State University

ALLEN ADAIR TUBBS Troy University

WILL UNSELL University of Central Oklahoma

RANI VAJRAVELU University of Central Florida

Jack Waber West Chester University of Pennsylvania

KATHY WEBB Bucks County Community College

Virginia White Riverside Community College

KATHLEEN LUCY WILSENN University of Northern Colorado

PENNI JO WILSO Cleveland State Community College

MICHAEL L. WOMACK Macon State College

MARK L. WYGODA McNeese State University

Lan Xu South Dakota State University

Poksyn ("Grace") Yoon Johnson and Wales University

CONTENTS IN BRIEF

Highlighted chapters are not include in Biology: A Human Emphasis

INTRODUCTION

1 Invitation to Biology

UNIT I PRINCIPLES OF CELLULAR LIFE

- 2 Life's Chemical Basis
- 3 Molecules of Life
- 4 Cell Structure and Function
- 5 Ground Rules of Metablolism
- 6 Where It Starts-Photosynthesis
- 7 How Cells Release Chemical Energy

UNIT II PRINCIPLES OF INHERITANCE

- 8 How Cells Reproduce
- 9 Meiosis and Sexual Reproduction
- 10 Observing Patterns in Inherited Traits
- 11 Chromosomes and Human Inheritance
- 12 DNA Structure and Function
- 13 From DNA to Protein
- 14 Controls Over Genes
- 15 Studying and Manipulating Genomes

UNIT III PRINCIPLES OF EVOLUTION

- 16 Evidence of Evolution
- 17 Microevolutionary Processes
- 18 Life's Origin and Early Evolution

UNIT IV EVOLUTION AND BIODIVERSITY

- 19 Prokaryotes and Viruses
- 20 "Protists"—The Simplest Eukaryotes
- 21 Plant Evolution
- 22 Fungi
- 23 Animal Evolution—The Invertebrates

- 24 Animal Evolution—The Vertebrates
- 25 Plants and Animals—Common Challenges

UNIT V HOW PLANTS WORK

- 26 Plant Tissues
- 27 Plant Nutrition and Transport
- 28 Plant Reproduction and Development

UNIT VI HOW ANIMALS WORK

- 29 Animal Tissues and Organ Systems
- 30 Neural Control
- 31 Sensory Perception
- 32 Endocrine Control
- 33 Structural Support and Movement
- 34 Circulation
- 35 Immunity
- 36 Respiration
- 37 Digestion and Human Nutrition
- 38 The Internal Environment
- 39 Animal Reproduction and Development

UNIT VII PRINCIPLES OF ECOLOGY

- 40 Population Ecology
- 41 Community Structure and Biodiversity
- 42 Ecosystems
- 43 The Biosphere
- 44 Behavioral Ecology

Epilogue

DETAILED CONTENTS

INTRODUCTION

1 Invitation to Biology

IMPACTS, ISSUES Lost Worlds and Other Wonders 2

- 1.1 Life's Levels of Organization 4

 MAKING SENSE OF THE WORLD 4

 A PATTERN IN LIFE'S ORGANIZATION 4
- 1.2 Overview of Life's Unity 6

 ENERGY AND LIFE'S ORGANIZATION 6

 ORGANISMS SENSE AND RESPOND TO CHANGE 6

 ORGANISMS GROW AND REPRODUCE 7
- 1.3 If So Much Unity, Why So Many Species? 8
- 1.4 An Evolutionary View of Diversity 10
- 1.5 Critical Thinking and Science 11
 THINKING ABOUT THINKING 11
 THE SCOPE AND LIMITS OF SCIENCE 11
- 1.6 How Science Works 12

 OBSERVATIONS, HYPOTHESES, AND TESTS 12

 ABOUT THE WORD "THEORY" 12

 SOME TERMS USED IN EXPERIMENTS 13
- 1.7 The Power of Experimental Tests 14
 POTATO CHIPS AND GAS 14
 BUTTERFLIES AND BIRDS 14
 ASKING USEFUL QUESTIONS 15
- 1.8 FOCUS ON SCIENCE Sampling Error in Experiments 16

UNIT | PRINCIPLES OF CELLULAR LIFE

2 Life's Chemical Basis

IMPACTS, ISSUES What Are You Worth? 20

- 2.1 Start With Atoms 22
 CHARACTERISTICS OF ATOMS 22
 THE PERIODIC TABLE 22
- 2.2 FOCUS ON SCIENCE Putting Radioisotopes To Use 23
- 2.3 Why Electrons Matter 24

 ELECTRONS AND ENERGY LEVELS 24

 WHY ATOMS INTERACT 24

 Shells and Electrons 24

 Atoms and lons 25

 From Atoms to Molecules 25

- 2.4 What Happens When Atoms Interact? 26
 IONIC BONDING 26
 COVALENT BONDING 26
 HYDROGEN BONDING 27
- 2.5 Water's Life-Giving Properties 28

 POLARITY OF THE WATER MOLECULE 28

 WATER'S TEMPERATURE-STABILIZING EFFECTS 28

 WATER'S SOLVENT PROPERTIES 29

 WATER'S COHESION 29
- 2.6 Acids and Bases 30

 THE pH SCALE 30

 HOW DO ACIDS AND BASES DIFFER? 30

 SALTS AND WATER 31

 BUFFERS AGAINST SHIFTS IN pH 31

3 Molecules of Life

IMPACTS, ISSUES Science or Supernatural? 34

- 3.1 Molecules of Life—From Structure to Function 36

 CARBON'S BONDING BEHAVIOR 36

 FUNCTIONAL GROUPS 36

 WHAT CELLS DO TO ORGANIC COMPOUNDS 37
- 3.2 Carbohydrates—The Most Abundant Ones 38
 SIMPLE SUGARS 38
 SHORT-CHAIN CARBOHYDRATES 38
 COMPLEX CARBOHYDRATES 38
- 3.3 Greasy, Oily—Must Be Lipids 40

 FATS 40

 PHOSPHOLIPIDS 41

 WAXES 41

 CHOLESTEROL AND OTHER STEROLS 41
- 3.4 Proteins—Diversity in Structure and Function 42PROTEINS AND AMINO ACIDS 42LEVELS OF PROTEIN STRUCTURE 42
- 3.5 Why Is Protein Structure So Important? 44

 JUST ONE WRONG AMINO ACID . . . 44

 PROTEINS UNDONE—DENATURATION 44
- 3.6 Nucleotides, DNA, and the RNAs 46

4 Cell Structure and Function

IMPACTS, ISSUES Animalcules and Cells Fill'd
With Juices 50

4.1 What Is a Cell? 52

THE BASICS OF CELL STRUCTURE 52

PREVIEW OF CELL MEMBRANES 52

CELL SIZES AND SHAPES 52

- 4.2 FOCUS ON SCIENCE How Do We See Cells? 54

 THE CELL THEORY 54

 MODERN MICROSCOPES 54
- 4.3 CONNECTIONS Membrane Structure and Function 56
 THE FLUID MOSAIC MODEL 56
 THE MAIN CATEGORIES OF PROTEINS 56
 VARIATIONS ON THE MODEL 56
 Differences in Membrane Composition 56
 Differences in Fluidity 56
- 4.4 Introducing Prokaryotic Cells 58
- 4.5 FOCUS ON THE ENVIRONMENT Microbial Mobs 59
- 4.6 Introducing Eukaryotic Cells 60
- 4.7 The Nucleus 61
- 4.8 The Endomembrane System 62
 ENDOPLASMIC RETICULUM 62
 GOLGI BODIES 62
 A VARIETY OF VESICLES 63
- 4.9 Mitochondria and Chloroplasts 64MITOCHONDRIA 64CHLOROPLASTS 64
- 4.10 Visual Summary of Eukaryotic Cell Components 65
- 4.11 Cell Surface Specializations 66

 EUKARYOTIC CELL WALLS 66

 MATRIXES BETWEEN ANIMAL CELLS 66

 CELL JUNCTIONS 67
- 4.12 The Dynamic Cytoskeleton 68

 COMPONENTS OF THE CYTOSKELETON 68

 CILIA, FLAGELLA, AND FALSE FEET 68

5 Ground Rules of Metabolism

IMPACTS, ISSUES Alcohol, Enzymes, and Your Liver 72

- 5.1 Energy and the World of Life 74

 ENERGY DISPERSES 74

 ENERGY IN, ENERGY OUT 74

 THE GREAT ONE-WAY FLOW OF ENERGY 75
- 5.2 ATP in Metabolism 76
- 5.3 Enzymes in Metabolism 76

 ACTIVATION ENERGY—WHY THE WORLD DOES NOT GO UP IN FLAMES 76

 ENZYME STRUCTURE AND FUNCTION 76

- 5.4 Enzymes Don't Work Alone 78

 CONTROLS OVER ENZYMES 78

 EFFECTS OF TEMPERATURE, pH, AND SALINITY 78

 HELP FROM COFACTORS 79
- 5.5 Metabolism—Organized, Enzyme-Mediated Reactions 80 TYPES OF METABOLIC PATHWAYS 80 THE DIRECTION OF METABOLIC REACTIONS 80 REDOX REACTIONS 81
- 5.6 Diffusion, Membranes, and Metabolism 82 WHAT IS A CONCENTRATION GRADIENT? 82 DIFFUSION RATES 82 DIFFUSION AND MEMBRANE PERMEABILITY 82 HOW SUBSTANCES CROSS MEMBRANES 83
- 5.7 Working With and Against Gradients 84 PASSIVE TRANSPORT 84 ACTIVE TRANSPORT 84
- 5.8 Which Way Will Water Move? 86

 MOVEMENT OF WATER 86

 EFFECTS OF TONICITY 86

 EFFECTS OF FLUID PRESSURE 86
- 5.9 Membrane Traffic To and From the Cell Surface 88 ENDOCYTOSIS AND EXOCYTOSIS 88 MEMBRANE CYCLING 89
- 5.10 FOCUS ON SCIENCE Night Lights 89

6 Where It Starts—Photosynthesis

IMPACTS, ISSUES Sunlight and Survival 92

- 6.1 Sunlight as an Energy Source 94
 PROPERTIES OF LIGHT 94
 THE RAINBOW CATCHERS 94
- 6.2 FOCUS ON SCIENCE Exploring the Rainbow 96
- 6.3 Overview of Photosynthesis 97
- 6.4 Light-Dependent Reactions 98

 CAPTURING ENERGY FOR PHOTOSYNTHESIS 98

 ELECTRON FLOW IN A NONCYCLIC PATHWAY 98

 Using Electrons To Make ATP 98

 Replacing Lost Electrons 98

 ELECTRON FLOW IN A CYCLIC PATHWAY 99
- 6.5 FOCUS ON SCIENCE Energy Flow in Photosynthesis 100

- 6.6 Light-Independent Reactions: The Sugar Factory 101
- 6.7 Adaptations: Different Carbon-Fixing Pathways 102
- 6.8 FOCUS ON THE ENVIRONMENT A Burning Concern 103

7 How Cells Release Chemical Energy

IMPACTS, ISSUES When Mitochondria Spin Their Wheels 106

- 7.1 Overview of Carbohydrate Breakdown
 Pathways 108
 COMPARISON OF THE MAIN PATHWAYS 108
 OVERVIEW OF AEROBIC RESPIRATION 109
- 7.2 Glycolysis-Glucose Breakdown Starts 110
- 7.3 Second Stage of Aerobic Respiration 112

 ACETYL-CoA FORMATION 112

 THE KREBS CYCLE 112

 ABNORMAL STRUCTURE, ALTERED FUNCTION 113
- 7.4 Aerobic Respiration's Big Energy Payoff 114
 ELECTRON TRANSFER PHOSPHORYLATION 114
 SUMMING UP: THE ENERGY HARVEST 114
- 7.5 Anaerobic Energy-Releasing Pathways 116
 FERMENTATION PATHWAYS 116
 Alcoholic Fermentation 116
 Lactate Fermentation 117
- 7.6 FOCUS ON HEALTH The Twitchers 117
- 7.7 Alternative Energy Sources in the Body 118

 THE FATE OF GLUCOSE AT MEALTIME AND
 BETWEEN MEALS 118

 ENERGY FROM FATS 118

 ENERGY FROM PROTEINS 118
- 7.8 CONNECTIONS Reflections on Life's Unity 120

UNIT II PRINCIPLES OF INHERITANCE

8 How Cells Reproduce

IMPACTS, ISSUES Henrietta's Immortal Cells 124

- 8.1 Overview of Cell Division Mechanisms 126
 MITOSIS, MEIOSIS, AND THE PROKARYOTES 126
 KEY POINTS ABOUT CHROMOSOME STRUCTURE 126
- 8.2 Introducing the Cell Cycle 128

 THE WONDER OF INTERPHASE 128

 MITOSIS AND THE CHROMOSOME NUMBER 129
- 8.3 A Closer Look at Mitosis 130
- 8.4 Cytoplasmic Division Mechanisms 132

HOW DO ANIMAL CELLS DIVIDE? 132
HOW DO PLANT CELLS DIVIDE? 133
APPRECIATE THE PROCESS! 133

8.5 FOCUS ON HEALTH When Control Is Lost 134

THE CELL CYCLE REVISITED 134

CHECKPOINT FAILURE AND TUMORS 134

CHARACTERISTICS OF CANCER 135

9 Meiosis and Sexual Reproduction

IMPACTS, ISSUES Why Sex? 138

- 9.1 Introducing Alleles 140
- 9.2 What Meiosis Does 140
 THINK "HOMOLOGUES" 140
 TWO DIVISIONS, NOT ONE 141
- 9.3 Visual Tour of Meiosis 142
- 9.4 How Meiosis Introduces Variations in Traits 144
 CROSSING OVER IN PROPHASE I 144
 METAPHASE I ALIGNMENTS 145
- 9.5 From Gametes to Offspring 146
 GAMETE FORMATION IN PLANTS 146
 GAMETE FORMATION IN ANIMALS 146
 MORE SHUFFLINGS AT FERTILIZATION 146
- 9.6 CONNECTIONS Mitosis and Meiosis—An Ancestral Connection? 148

10 Observing Patterns in Inherited Traits

IMPACTS, ISSUES Menacing Mucus 152

- 10.1 Mendel, Pea Plants, and Inheritance
 Patterns 154
 MENDEL'S EXPERIMENTAL APPROACH 154
 TERMS USED IN MODERN GENETICS 155
- 10.2 Mendel's Theory of Segregation 156
 TESTCROSSES 157
- 10.3 Mendel's Theory of Independent Assortment 158
- 10.4 Beyond Simple Dominance 160

 CODOMINANCE IN ABO BLOOD TYPES 160

 INCOMPLETE DOMINANCE 160

 EPISTASIS 161

 SINGLE GENES WITH A WIDE REACH 161
- 10.5 Linkage Groups 162
- 10.6 Genes and the Environment 163
- 10.7 Complex Variations in Traits 164

 CONTINUOUS VARIATION IN POPULATIONS 164

 REGARDING THE UNEXPECTED PHENOTYPE 165

11 Chromosomes and Human Inheritance

IMPACTS, ISSUES Strange Genes, Tortured Minds 168

- 11.1 Human Chromosomes 170

 AUTOSOMES AND SEX CHROMOSOMES 170

 SEX DETERMINATION 170

 KARYOTYPING 171
- 11.2 Examples of Autosomal Inheritance Patterns 172
 AUTOSOMAL DOMINANT INHERITANCE 172
 AUTOSOMAL RECESSIVE INHERITANCE 172
 WHAT ABOUT NEUROBIOLOGICAL DISORDERS? 173
- 11.3 FOCUS ON HEALTH Young, Yet Old 173
- 11.4 Examples of X-Linked Inheritance Patterns 174

 HEMOPHILIA A 174

 RED-GREEN COLOR BLINDNESS 175

 DUCHENNE MUSCULAR DYSTROPHY 175
- 11.5 Heritable Changes in Chromosome Structure 176

 MAIN CATEGORIES OF STRUCTURAL CHANGE 176

 Duplication 176

 Deletion 176

 Inversion 176

 Translocation 176

 DOES CHROMOSOME STRUCTURE EVOLVE? 177
- 11.6 Heritable Changes in the Chromosome Number 178
 AUTOSOMAL CHANGE AND DOWN SYNDROME 178
 CHANGE IN THE SEX CHROMOSOME NUMBER 179
 Female Sex Chromosome Abnormalities 179
 Male Sex Chromosome Abnormalities 179
- 11.7 Human Genetic Analysis 180
- 11.8 FOCUS ON HEALTH Prospects in Human Genetics 182
 GENETIC COUNSELING 182
 PRENATAL DIAGNOSIS 182
 PREIMPLANTATION DIAGNOSIS 183
 PHENOTYPIC TREATMENTS 183
 REGARDING ABORTION 183
 GENETIC SCREENING 183

12 DNA Structure and Function

IMPACTS, ISSUES Here, Kitty, Kitty, Kitty, Kitty, Kitty 186

12.1 The Hunt for Fame, Fortune, and DNA 188

EARLY AND PUZZLING CLUES 188

CONFIRMATION OF DNA FUNCTION 188

ENTER WATSON AND CRICK 189

- 12.2 The Discovery of DNA's Structure 190
 DNA'S BUILDING BLOCKS 190
 PATTERNS OF BASE PAIRING 191
- 12.3 FOCUS ON BIOETHICS Fame and Glory 192
- 12.4 Replication and Repair 192
 HOW DNA GETS COPIED 192
 CHECKING FOR MISTAKES 193
- 12.5 FOCUS ON SCIENCE Using DNA To Duplicate Existing Mammals 194

13 From DNA to Protein

IMPACTS, ISSUES Ricin and Your Ribosomes 196

- 13.1 Transcription 198
- 13.2 The Genetic Code 200
- 13.3 tRNA and rRNA 201
- 13.4 The Three Stages of Translation 202
- 13.5 Mutated Genes and Their Protein Products 204
 COMMON GENE MUTATIONS 204
 HOW DO MUTATIONS ARISE? 204
 THE PROOF IS IN THE PROTEIN 205

14 Controls Over Genes

IMPACTS, ISSUES Between You and Eternity 208

- 14.1 Gene Expression in Eukaryotic Cells 210
 WHICH GENES GET TAPPED? 210
 Control of Transcription 210
 mRNA Processing and Transport 211
 Translational Control 211
 Controls After Translation 211
- 14.2 A Few Outcomes of Gene Controls 212

 X CHROMOSOME INACTIVATION 212

 GENE CONTROL OF FLOWER FORMATION 213
- 14.3 FOCUS ON SCIENCE There's a Fly in My Research 214
 DISCOVERY OF HOMEOTIC GENES 214
 KNOCKOUT EXPERIMENTS 214
 FILLING IN DETAILS OF BODY PLANS 215
- 14.4 Prokaryotic Gene Control 216

 NEGATIVE CONTROL OF THE LACTOSE OPERON 216

 POSITIVE CONTROL OF THE LACTOSE OPERON 217

 LACTOSE INTOLERANCE 217

15 Studying and Manipulating Genomes

IMPACTS, ISSUES Golden Rice, or Frankenfood? 220

- 15.1 A Molecular Toolkit 222
 CUT AND PASTE 222
 CLONING VECTORS 222
 CDNA CLONING 223
- 15.2 From Haystacks to Needles 224
 ISOLATING GENES 224
 BIG-TIME AMPLIFICATION: PCR 224
- 15.3 DNA Sequencing 226
- 15.4 FOCUS ON SCIENCE Analyzing DNA Fingerprints 227
- 15.5 The Rise of Genomics 228

 THE HUMAN GENOME PROJECT 228

 GENOMICS 229

 DNA CHIPS 229
- 15.6 Genetic Engineering 230
- 15.7 Designer Plants 230

 HOW PLANTS GET ENGINEERED 230

 GENETICALLY ENGINEERED PLANTS 230
- 15.8 Biotech Barnyards 232

 OF MICE AND MEN 232

 KNOCKOUT CELLS AND ORGAN FACTORIES 232
- 15.9 Safety Issues 233
- 15.10 CONNECTIONS Modified Humans? 234
 WHO GETS WELL? 234
 WHO GETS ENHANCED? 234

16 Evidence of Evolution

IMPACTS, ISSUES Measuring Time 238

- 16.1 Early Beliefs, Confounding Discoveries 240
 QUESTIONS FROM BIOGEOGRAPHY 240
 QUESTIONS FROM COMPARATIVE MORPHOLOGY 241
 QUESTIONS ABOUT FOSSILS 241
- 16.2 A Flurry of New Theories 242 SQUEEZING NEW EVIDENCE INTO OLD BELIEFS 242 VOYAGE OF THE BEAGLE 242
- 16.3 Darwin, Wallace, and Natural Selection 244
 OLD BONES AND ARMADILLOS 244
 A KEY INSIGHT—VARIATION IN TRAITS 244
 NATURAL SELECTION DEFINED 245
- 16.4 Fossils—Evidence of Ancient Life 246
 HOW DO FOSSILS FORM? 246
 FOSSILS IN SEDIMENTARY ROCK LAYERS 247
 INTERPRETING THE FOSSIL RECORD 247

- 16.5 Dating Pieces of the Puzzle 248

 RADIOMETRIC DATING 248

 PLACING FOSSILS IN GEOLOGIC TIME 248
- 16.6 Drifting Continents, Changing Seas 250
 AN OUTRAGEOUS HYPOTHESIS 250
 A BIG CONNECTION 251
- 16.7 Divergences From a Shared Ancestor 252

 MORPHOLOGICAL DIVERGENCE 252

 MORPHOLOGICAL CONVERGENCE 253
- 16.8 Changes in Patterns of Development 254
 GENES AND VARIATION IN PLANTS 254
 GENES AND VARIATION IN ANIMALS 254
 How Many Legs? 254
 Chimps and Humans 254
- 16.9 Clues in DNA, RNA, and Proteins 256

 MOLECULAR CLOCKS 256

 PROTEIN COMPARISONS 256

 NUCLEIC ACID COMPARISONS 256
- 16.10 Organizing Information About Species 258
 THE HIGHER TAXA 258
 A CLADISTIC APPROACH 258
- 16.11 FOCUS ON SCIENCE How to Construct a Cladogram 260
- 16.12 Preview of Life's Evolutionary History 261

17 Processes of Evolution

IMPACTS, ISSUES Rise of the Super Rats 264

- 17.1 Individuals Don't Evolve, Populations Do 266

 VARIATION IN POPULATIONS 266

 THE GENE POOL 266

 MUTATION REVISITED 266

 STABILITY AND CHANGE IN ALLELE FREQUENCIES 267
- 17.2 FOCUS ON SCIENCE When Is A Population Not Evolving? 268

 THE HARDY-WEINBERG FORMULA 268

 APPLYING THE RULE 269
- 17.3 Natural Selection Revisited 269
- 17.4 Directional Selection 270

 EFFECTS OF PREDATION 270

 The Peppered Moth 270

 Pocket Mice 270

 RESISTANCE TO ANTIBIOTICS 271
- 17.5 Selection Against or in Favor of Extreme Phenotypes 272

 STABILIZING SELECTION 272

 DISRUPTIVE SELECTION 273
- 17.6 Maintaining Variation 274
 SEXUAL SELECTION 274
 BALANCED POLYMORPHISM 275

- 17.7 Genetic Drift—The Chance Changes 276

 BOTTLENECKS AND THE FOUNDER EFFECT 276

 INBRED POPULATIONS 277
- 17.8 Gene Flow 277
- 17.9 Reproductive Isolation 278

 SPECIES AND SPECIATION 278

 PREZYGOTIC ISOLATING MECHANISMS 278

 Temporal Isolation 278

 Mechanical Isolation 279

 Behavioral Isolation 279

 Ecological Isolation 279
 - Gamete Incompatibility 279
 POSTZYGOTIC ISOLATING MECHANISMS 279
- 17.10 Allopatric Speciation 280
 THE INVITING ARCHIPELAGOS 280
- 17.11 Other Speciation Models 282
 SYMPATRIC SPECIATION 282
 Polyploidy 282
 Other Examples 282
 ISOLATION AT HYBRID ZONES 283
- 17.12 Macroevolution 284

THE RATE OF EVOLUTIONARY CHANGE 284

PATTERNS OF MACROEVOLUTION 284

Preadaptation 284

Adaptive Radiation 284

Coevolution 284

Extinction 285

EVOLUTIONARY THEORY 285

- 17.13 FOCUS ON EVOLUTION For the Birds 286
- 17.14 CONNECTIONS Adaptation to What? 286
 SALT-TOLERANT TOMATOES 286
 NO POLAR BEARS IN THE DESERT 287
 ADAPTATION TO WHAT? A WORD OF CAUTION 287.

18 Life's Origin and Early Evolution

IMPACTS, ISSUES Looking for Life in All the Odd Places 290

- 18.1 In the Beginning . . . 292

 CONDITIONS ON THE EARLY EARTH 292

 ORIGIN OF THE MOLECULES OF LIFE 293
- 18.2 How Did Cells Emerge? 294

 ORIGIN OF AGENTS OF METABOLISM 294

- ORIGIN OF THE PLASMA MEMBRANE 294
 ORIGIN OF SELF-REPLICATING GENETIC SYSTEMS 295
- 18.3 The First Cells 296

 THE GOLDEN AGE OF PROKARYOTES 296

 THE RISE OF EUKARYOTES 296
- 18.4 CONNECTIONS Where Did Organelles Come From? 298
 ORIGIN OF THE NUCLEUS, ER, AND GOLGI BODY 298
 THE ROLE OF ENDOSYMBIOSIS 298
 EVIDENCE OF ENDOSYMBIOSIS 299
- 18.5 Time Line for Life's Origin and Evolution 300

UNIT IV EVOLUTION AND BIODIVERSITY

19 Prokaryotes and Viruses

IMPACTS, ISSUES West Nile Virus Takes Off 304

- 19.1 Characteristics of Prokaryotic Cells 306
 CELL SIZES, SHAPES, AND STRUCTURES 306
 METABOLIC DIVERSITY 306
 REPRODUCTION AND GENE TRANSFERS 307
 CLASSIFICATION AND PHYLOGENY 307
- 19.2 The Bacteria 308

 REPRESENTATIVE DIVERSITY 308

 REGARDING THE "SIMPLE" BACTERIA 309
- 19.3 The Archaeans 310
 THE THIRD DOMAIN 310
 HERE, THERE, EVERYWHERE 310
- 19.4 The Viruses 312
 THE STRUCTURE OF VIRUS PARTICLES 312
 VIRAL MULTIPLICATION 312
- 19.5 FOCUS ON SCIENCE Viroids and Prions 314
 THE SMALLEST PATHOGENS 314
 FATAL MISFOLDINGS 314
- 19.6 CONNECTIONS Evolution and Disease 315
 THE NATURE OF DISEASE 315
 DRUG-RESISTANT PATHOGENS 315

20 Protists—The Simplest Eukaryotes

IMPACTS, ISSUES Tiny Critters, Big Impacts 318

- 20.1 An Evolutionary Road Map 320
- 20.2 Evolutionarily Ancient Flagellates 321

20.3 Shelled Amoebas 322

20.4 Alveolates 322

CILIATES 322
DINOFLAGELLATES 322

APICOMPLEXANS 323

20.5 FOCUS ON HEALTH Malaria and the Night-Feeding Mosquitoes 324

20.6 Single-Celled Stramenopiles 325

20.7 Brown Algae 326

20.8 Green Algae 326 CHLOROPHYTES 326 CHAROPHYTES 327

20.9 Red Algae 328

20.10 FOCUS ON SCIENCE Amoeboid Cells at the Crossroads 329

21 Plant Evolution

IMPACTS, ISSUES Beginnings, And Endings 332

21.1 CONNECTIONS Evolutionary Trends Among Plants 334
FROM HAPLOID TO DIPLOID DOMINANCE 334
ROOTS, STEMS, AND LEAVES 334
POLLEN AND SEEDS 335

21.2 The Bryophytes—No Vascular Tissues 336

21.3 Seedless Vascular Plants 338

CLUB MOSSES AND SPIKE MOSSES 338

WHISK FERNS AND HORSETAILS 338

FERNS—NO SEEDS, BUT MUCH DIVERSITY 339

21.4 FOCUS ON THE ENVIRONMENT Ancient Carbon Treasures 340

21.5 The Rise of Seed-Bearing Plants 341

21.6 Gymnosperms—Plants With Naked Seeds 342
CONIFERS 342
LESSER KNOWN GYMNOSPERMS 342
A REPRESENTATIVE LIFE CYCLE 343

21.7 Angiosperms—The Flowering Plants 344
COEVOLUTION WITH POLLINATORS 344
FLOWERING PLANT DIVERSITY 344

21.8 Focus on a Flowering Plant Life Cycle 346

21.9 FOCUS ON SCIENCE The World's Most Nutritious Plant 347

22 Fungi

IMPACTS, ISSUES Food, Forests, and Fungi 350

22.1 Characteristics of Fungi 352 FUNGAL GROUPS 352

OVERVIEW OF FUNGAL LIFE CYCLES 352

22.2 Zygomycetes-The Zygote Fungi 353

22.3 Ascomycetes—The Sac Fungi 354
KEY CHARACTERISTICS 354
A SAMPLING OF DIVERSITY 354

22.4 Basidiomycetes—The Club Fungi 355

22.5 The Fungal Symbionts 356
LICHENS REVISITED 356
FUNGAL ENDOPHYTES 356
MYCORRHIZAE—THE FUNGUS ROOTS 356

22.6 FOCUS ON HEALTH An Unloved Few 357

23 Animal Evolution—The Invertebrates

IMPACTS, ISSUES Old Genes, New Drugs 360

23.1 Animal Traits and Trends 362
WHAT IS AN ANIMAL? 362
Animal Tissues 362
Body Size Revisited 362
OVERVIEW OF ANIMAL BODY PLANS 362

23.2 Animal Origins and Early Radiations 364

23.3 Sponges—Success in Simplicity 365

GENERAL CHARACTERISTICS 365

SPONGE REPRODUCTION 365

23.4 Cnidarians—Simple Tissues, No Organs 366
GENERAL CHARACTERISTICS 366
UNIQUE CNIDARIAN WEAPONS 367
LIFE CYCLES 367

23.5 Flatworms—Simple Organ Systems 368

STRUCTURE OF A FREE-LIVING FLATWORM 368
FLUKES AND TAPEWORMS—THE PARASITES 368

23.6 Annelids—Segments Galore 370
SIMPLE TO HIGHLY MODIFIED SEGMENTS 370
ANNELID ADAPTATIONS—A CASE IN POINT 370

23.7 The Pliable Mollusks 372
HIDING OUT, OR NOT 372
ON THE CEPHALOPOD NEED FOR SPEED 373

23.8 Roundworms 374

23.9 Why Such Spectacular Arthropod Diversity? 375
MAJOR GROUPS 375
KEY ARTHROPOD ADAPTATIONS 375

Hardened Exoskeleton 375

Jointed Appendages 375

Highly Modified Segments 375

Respiratory Structures 375

Sensory Specializations 375

Specialized Stages of Development 375

23.10 Spiders and Their Relatives 376

23.11 A Look at the Crustaceans 377

23.12 A Look at Insect Diversity 378

23.13 FOCUS ON HEALTH Unwelcome Arthropods 380
HARMFUL SPIDERS 380
TERRIBLE TICKS 380
THE MOSQUITO MENACE 380

23.14 The Spiny-Skinned Echinoderms 381

24 Animal Evolution—The Vertebrates

IMPACTS, ISSUES Interpreting and Misinterpreting
the Past 384

24.1 The Chordate Heritage 386
CHORDATE CHARACTERISTICS 386

INVERTEBRATE CHORDATES 386

Tunicates 386

Lancelets 386

A BRAINCASE BUT NO BACKBONE 387

24.2 CONNECTIONS Evolutionary Trends Among the Vertebrates 388

EARLY CRANIATES 388

KEY INNOVATIONS 388

MAJOR VERTEBRATE GROUPS 389

24.3 Jawed Fishes and the Rise of Tetrapods 390

CARTILAGINOUS FISHES 390

BONY FISHES 391

THE FIRST TETRAPODS 391

24.4 Amphibians—First Tetrapods on Land 392

EVOLUTIONARY HIGH POINTS 392

THE MAIN MODERN GROUPS 393

24.5 FOCUS ON THE ENVIRONMENT Vanishing Acts 393

24.6 The Rise of Amniotes 394

24.7 FOCUS ON EVOLUTION So Long, Dinosaurs 395

24.8 Portfolio of Modern "Reptiles" 396

GENERAL CHARACTERISTICS 396

MAJOR GROUPS 396

Turtles 396

Lizards 396

Tuataras 396

Snakes 396 Crocodilians 397

24.9 Birds-The Feathered Ones 398

24.10 The Rise of Mammals 400

24.11 From Early Primates to Hominids 402

OVERVIEW OF KEY TRENDS 402

ORIGINS AND EARLY DIVERGENCES 403

24.12 Emergence of Early Humans 404

EARLY HOMINIDS 404

EARLY HUMANS 405

24.13 Emergence of Modern Humans 406

BRANCHINGS OF THE HUMAN LINEAGE 406

WHERE DID MODERN HUMANS ORIGINATE? 406

Multiregional Model 406

Replacement Model 406

LEAVING HOME 407

25 Plants and Animals—Common Challenges

IMPACTS, ISSUES A Cautionary Tale 410

25.1 Levels of Structural Organization 412

FROM CELLS TO MULTICELLED ORGANISMS 412
GROWTH VERSUS DEVELOPMENT 412
STRUCTURAL ORGANIZATION HAS A HISTORY 412
THE BODY'S INTERNAL ENVIRONMENT 413

START THINKING "HOMEOSTASIS" 413

25.2 Recurring Challenges to Survival 414

GAS EXCHANGE IN LARGE BODIES 414

INTERNAL TRANSPORT IN LARGE BODIES 414

MAINTAINING THE WATER-SOLUTE BALANCE 414

CELL-TO-CELL COMMUNICATION 415

ON VARIATIONS IN RESOURCES AND THREATS 415

25.3 Homeostasis in Animals 416

NEGATIVE FEEDBACK 416

POSITIVE FEEDBACK 417

25.4 Does Homeostasis Occur in Plants? 418

WALLING OFF THREATS 418

SAND, WIND, AND THE YELLOW BUSH LUPINE 418

ABOUT RHYTHMIC LEAF FOLDING 419

25.5 How Cells Receive and Respond to Signals 420

UNIT V HOW PLANTS WORK

26 Plant Tissues

MPACTS, ISSUES Droughts Versus Civilization 424

26.1 Components of the Plant Body 426 THE BASIC BODY PLAN 426 OVERVIEW OF THE TISSUE SYSTEMS 426 EUDICOTS AND MONOCOTS—SAME TISSUES. DIFFERENT FEATURES 426 INTRODUCING MERISTEMS 426

26.2 Components of Plant Tissues 428 CELLS OF SIMPLE TISSUES 428 CELLS OF COMPLEX TISSUES 428 Vascular Tissues 428 Dermal Tissues 429

26.3 Primary Structure of Shoots 430 BEHIND THE APICAL MERISTEM 430 INSIDE THE STEM 430

26.4 A Closer Look at Leaves 432 LEAF SIMILARITIES AND DIFFERENCES 432 LEAF FINE STRUCTURE 432 Leaf Epidermis 432 Mesophyll-Photosynthetic Ground Tissue 432 Veins-The Leaf's Vascular Bundles 433

26.5 Primary Structure of Roots 434 TAPROOT AND FIBROUS ROOT SYSTEMS 434 INTERNAL STRUCTURE OF ROOTS 434

26.6 Accumulated Secondary Growth-The Woody Plants 436

26.7 FOCUS ON SCIENCE Keeping Secrets 438

27 Plant Nutrition and Transport

IMPACTS, ISSUES Leafy Clean-Up Crews 440

27.1 Plant Nutrients and Availability in Soil 442 THE REQUIRED NUTRIENTS 442 PROPERTIES OF SOIL 442 Soils and Plant Growth 442 How Soils Develop 443 LEACHING AND EROSION 443

27.2 How Do Roots Absorb Water and Mineral Ions? 444 SPECIALIZED ABSORPTIVE STRUCTURES 444 Mycorrhizae 444 Root Nodules 444 Root Hairs 444 HOW ROOTS CONTROL WATER UPTAKE 445

27.3 How Does Water Move Through Plants? 446

TRANSPIRATION DEFINED 446 COHESION-TENSION THEORY 446

27.4 How Do Stems and Leaves Conserve Water? 448 THE WATER-CONSERVING CUTICLE 448 CONTROLLED WATER LOSS AT STOMATA 448

27.5 FOCUS ON THE ENVIRONMENT The Bad Ozone 449

27.6 How Do Organic Compounds Move Through Plants? 450 CONDUCTING TUBES IN PHLOEM 450 TRANSLOCATION 450

28 Plant Reproduction and Development

IMPACTS, ISSUES Imperiled Sexual Partners 454

28.1 Reproductive Structures of Flowering Plants 456 FLORAL STRUCTURE AND FUNCTION 456 REVISITING THE POLLINATORS 456

28.2 A New Generation Begins 458 MICROSPORE AND MEGASPORE FORMATION 458 POLLINATION AND FERTILIZATION 458

28.3 From Zygotes to Seeds and Fruits 460 THE EMBRYO SPOROPHYTE 460 SEED AND FRUIT FORMATION 460

28.4 Seed Dispersal—The Function of Fruits 462

28.5 Asexual Reproduction of Flowering Plants 462

28.6 Overview of Plant Development 464 SEED GERMINATION 464 PATTERNS OF EARLY GROWTH 464

Gibberellins 466

28.7 Plant Hormones and Other Signaling Molecules 466 MAJOR TYPES OF PLANT HORMONES 466

> Auxins 466 Cytokinins 466 Ethylene 467 Abscisic Acid 467 OTHER SIGNALING MOLECULES 467

28.8 Adjusting the Direction and Rates of Growth 468 RESPONSES TO GRAVITY 468 RESPONSES TO LIGHT 468 RESPONSES TO CONTACT 469 RESPONSES TO MECHANICAL STRESS 469

28.9 Sensing Recurring Environmental Changes 470 BIOLOGICAL CLOCKS 470 SETTING THE CLOCK 470 WHEN TO FLOWER? 470

28.10 Entering and Breaking Dormancy 472 ABSCISSION AND SENESCENCE 472 DORMANCY 472

