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Preface to the Original German Edition

At least since the development of the theory of NP-completeness, complexity
theory has become a central area of instruction and research within computer
science. The NP # P-problem represents one of the great intellectual challenges
of the present. In contrast to other areas within computer science, where it is
often suggested that nearly all problems are solvable with the aid of computers,
the goals of complexity theory include showing what computers cannot do.
Delineating the boundary between problems that can be efficiently solved
and those that can only be solved with an unreasonable amount of resources
is a practically relevant question, but so is the structural question of what
determines the complexity or “complicatedness” of problems.

The development of complexity theory is presented in this book as essen-
tially a reaction to algorithmic development. For this reason, the investiga-
tion of practically important optimization problems plays a predominant role.
From this algorithmic perspective, reduction concepts can be thought of as
methods to solve problems with the help of algorithms for other problems.
From this it follows conversely that we can derive the difficulty of a problem
from the difficulty of other problems.

In this book we choose an unusual approach to the central concept of non-
determinism. The usual description, based on computers that guess a correct
computation path or for which a suitable computation path exists, is often
confusing to students encountering nondeterminism for the first time. Here
this description is replaced with an introduction to randomized algorithms.
Nondeterminism is then simply the special case of one-sided error with an
error-rate that may be larger than is tolerable in applications. In this presen-
tation, nondeterministic algorithms can be run on normal computers, but do
not provide a satisfactory solution to problems. Based on experience, we are
hopeful that this algorithmic approach will make it simpler for students to
grasp the concept of nondeterminism.

Since this is not intended to be a research monograph, the content has been
limited to results that are important and useful for students of computer sci-
ence. In particular, this text is aimed at students who want an introduction
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to complexity theory but do not necessarily plan to specialize in this area. For
this reason, an emphasis has been placed on informal descriptions of the proof
ideas, which are, of course, followed by complete proofs. The emphasis is on
modern themes like the PCP-theorem, approximation problems, randomiza-
tion, and communication complexity at the expense of structural and abstract
complexity theory.

The first nine chapters describe the foundation of complexity theory. Be-
yond that, instructors can choose various emphases:

e Chapters 10, 13, and 14 describe a more classically oriented introduction
to complexity theory,

o Chapters 11 and 12 treat the complexity of approximation problems, and
Chapters 14, 15, and 16 treat the complexity of Boolean functions.

Many ideas have come together in this text that arose in conversations.
Since it is often no longer possible to recall where, when, and with whom
these conversations were held, I would like to thank all those who have dis-
cussed with me science in general and complexity theory in particular. Many
thanks to Beate Bollig, Stefan Droste, Oliver Giel, Thomas Hofmeister, Mar-
tin Sauerhoff, and Carsten Witt, who read the [original German| manuscript
and contributed to improvements through their critical comments, and to Al-
ice Czerniejewski, Danny Rozynski, Marion Scheel, Nicole Skaradzinski, and
Dirk Sudholt for their careful typesetting.

Finally, I want to thank Christa for not setting any limits on the time I
could spend on this book.

Dortmund/Bielefeld, January 2003 Ingo Wegener



Preface to the English Edition

This book is the second translation project I have undertaken for Springer.
My goal each time has been to produce a text that will serve its new audience
as well as the original book served its audience. Thus I have tried to mimic
as far as possible the style and “flavor” of the original text while making the
necessary adaptations. At the same time, a translation affords an opportunity
to make some improvements, which I have done in consultation with the
original author. And so, in some sense, the result is a translation of a second
edition that was never written.

Most of the revisions to the book are quite minor. Some bibliography
items have been added or updated; a number of German sources have been
deleted. Occasionally 1 have added or rearranged a paragraph, or included
some additional detail, but for the most part I have followed the original
quite closely. Where I found errors in the original, I have tried to fix them; I
hope I have corrected more than I have introduced.

It is always a good feeling to come to the end of a large project like this
one, and in looking back on the project there are always a number of people
to thank. Much of the work done to prepare the English edition of this book
was done while visiting the University of Ulm in the first half of 2004. The
last revisions and final touches were completed during my subsequent visit at
the University of Michigan. I would like to thank all my colleagues at both
institutions for their hospitality during these visits.

A writer is always the worst editor of his own writing, so for reading
portions of the text, identifying errors, and providing various suggestions for
improvement, I want to thank Beate Bollig, Stefan Droste, Jeremy Frens, Judy
Goldsmith, André Gronemeier, Jens Jagerskiipper, Thomas Jansen, Marcus
Schaefer, Tobias Storch, and Dieter van Melkebeek, each of whom read one
or more chapters. In addition, my wife, Pennylyn, read nearly the entire
manuscript. Their volunteered efforts have helped to ensure a more accurate
and stylistically consistent text. A list of those (I hope few) errors that have
escaped detection until after the printing of the book will be available at
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1s2-www.cs.uni-dortmund.de/monographs/ct

Finally, a special thanks goes to Ingo Wegener, who not only wrote the
original text but also responded to my comments and questions, and read the
English translation with a careful eye for details; and to Hermann Engesser
and Dorothea Glaunsinger at Springer for their encouragement, assistance,
and patience, and for a fine Kaffeestunde on a sunny afternoon in Heidelberg.

Ann Arbor, January 2005 Randall Pruim

It is possible to write a research monograph in a non-native language. In
fact, I have done this before. But a textbook with a pictorial language needs
a native speaker as translator. Moreover, the translator should have a good
feeling for the formulations and a background to understand and even to shape
and direct the text. Such a person is hard to find, and it is Randall Pruim who
made this project possible and, as I am convinced, in a perfect way. Indeed,
he did more than a translation. He found some mistakes and corrected them,
and he improved many arguments. Also thanks to Dorothea Glaunsinger and
Hermann Engesser from Springer for their enthusiastic encouragement and for
their suggestion to engage Randall Pruim as translator.

Bielefeld/Dortmund, January 2005 Ingo Wegener
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1

Introduction

1.1 What Is Complexity Theory?

Complexity theory — is it a discipline for theoreticians who have no concern
for “the real world” or a central topic of modern computer science?

In this introductory text, complexity theory is presented as an active area
of computer science with results that have implications for the development
and use of algorithms. Our study will lead to insights into the structure of
important optimization problems and will explore the borders of what is al-
gorithmically “possible” with reasonable resources. Since this text is also es-
pecially directed toward those who do not wish to make complexity theory
their specialty, results that do not (yet) have a connection to algorithmic
applications will be omitted.

The areas of complexity theory on the one hand and of the design and
analysis of efficient algorithms on the other look at algorithmic problems from
two opposing perspectives. An efficient algorithm can be directly applied to
solve a problem and is itself a proof of the efficient solvability of the problem.
In contrast, in complexity theory the goal is to prove that difficult problems
cannot be solved with modest resources. Bearers of bad news are seldom
welcome, and so it is that the results of complexity theory are more difficult
to communicate than a better algorithm for an important problem. Those
who do complexity theory are often asked such questions as

¢ “Why are you pleased with a proof that a problem is algorithmically dif-
ficult? It would be better if it had an efficient algorithmic solution.”

e “What good are these results? For my particular applied problem I need
an algorithmic solution. Now what do I do?”

Naturally, it would be preferable if a problem proved to be efficiently algo-
rithmically solvable. But whether or not this is the case is not up to us. Once
we have agreed upon the rules of the game (roughly: computers, but more
about that later), every problem has a well-defined algorithmic complexity.
Complexity theory and algorithm theory are both striving to estimate this
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algorithmic complexity and so to “discover the truth”. In this sense, the joy
over a proof that a problem is not efficiently solvable is, just like the joy over
the design of an efficient algorithm, the joy of finding out more about the true
algorithmic complexity.

Of course, our reaction to the discovery of truths does depend on whether
hopes were fulfilled or fears confirmed. What are the consequences when we
find out that the problem we are investigating is not efficiently solvable? First,
there is the obvious and very practical consequence that we can with good
reason abandon the search for an efficient algorithm. We need no longer waste
our time with attempts to obtain an unreachable goal. We are familiar with
this from other sciences as well. Reasonable people no longer build “perpetual
motion machines”, and they no longer try to construct from a circle, using
only straight edge and compass, a square with the same area (the proverbial
quadrature of the circle). In general, however, people have a hard time with
impossibility results. This can be seen in the large number of suggested designs
for perpetual motion machines and the large number of attempts to square a
circle that are still being made.

Once we have understood that we must accept negative results as well
as positive results, and that they save us unnecessary work, we are left with
the question of what to do. In the end, we are dealing with an algorithmic
problem the solution to which is important for some particular application.
Fortunately, problems in most applications are not unalterably determined.
It is often tempting to formulate a problem in a very general form and to
place very strict demands on the quality of the solution. If such a general
formulation has an efficient solution, great. But when this is not the case, we
can often specialize the problem (graphs that model street systems will have
low degree because there is a limit on the number of streets that can meet at
a single intersection), or perhaps a weaker form of solution will suffice (almost
optimal may be good enough). In this way we come up with new problems
which are perhaps efficiently algorithmically solvable. And so impossibility
proofs (negative resuits) help us find the problems that are (perhaps “just
barely”) efficiently solvable.

So complexity theory and the design and analysis of efficient algorithms
are the two areas of computer science which together fathom the borders
between what can and cannot be done algorithmically with realistic resource
requirements. There is, of course, a good deal of “cross-pollination” between
the two areas. Often attempts to prove the impossibility of an efficient solution
to a problem have so illuminated the structure of the problem that efficient
algorithms have been the result. On the other hand, failed attempts to design
an efficient algorithm often reveal just where the difficulty of a particular
problem lies. This can lead to ideas for proving the difficulty of the problem.
It is very often the case that one begins with a false conjecture about the
degree of difficulty of a problem, so we can expect to encounter startling
results in our study of the complexity of problems.
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As a result of this introductory discussion we maintain that

The goal of complexity theory is to prove for important problems that
their solutions require certain minimum resources. The results of com-
plexity theory have specific implications for the development of algo-
rithms for practical applications.

We have up until now been emphasizing the relationship between the areas
of complexity theory and algorithm design. Now, however, we want to take a
look at the differences between these areas. When designing an algorithm we
“only” need to develop and analyze one algorithm. This provides an upper
bound for the minimal resource requirements with which the problem can
be solved. Complexity theory must provide lower bounds for the minimaily
necessary resource requirements that every algorithm that solves the problem
must use. For the proof of an upper bound, it is sufficient to design and
analyze a single algorithm (and algorithms are often designed to support the
subsequent analysis). Every lower bound, on the other hand, is a statement
about all algorithms that solve a particular problem. The set of all algorithms
for a problem is not a very structured set. Its only structural characteristic is
that the problem be solved. How can we make use of this characteristic? An
obvious way to start is to derive from the structure of the problem statements
that restrict the set of algorithms we must consider. A specific example: It
seems clear that the best algorithms for matrix multiplication do not begin
by subtracting matrix elements from each other. But how does one prove
this? Or is a proof unnecessary, since the claim is so obvious? Quite the
opposite: The best algorithms known for matrix multiplication do in fact begin
by subtracting matrix elements (see, for example, Schénhage, Grotefeld, and
Vetter (1999)). This clearly shows the danger in drawing very “obvious” but
false conclusions. Therefore,

In order to prove that the solution of a particular problem requires cer-
tain minimal resources, all algorithms for the problem must be consid-
ered. This is the source of the main difficulty that impedes achieving
the goals of complexity theory.

We now know what kind of results we desire, and we have indicated that
they are difficult to come by. It sounds as if we want to excuse in advance the
absence of results. This is indeed the case:

None of the most important problems in complexity theory have been
solved, but along the way to answering the central questions many
notable results have been achieved.

How do we imagine this situation? The cover of the classic book by
Hopcroft and Ullman (1979), which includes an introduction to complexity
theory, shows a picture in which a curtain in front of the collection of truths
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of complexity theory is being lifted with the help of various results, thus al-
lowing a clear view of the results. From our perspective of complexity theory,
the curtain has so far only been pushed aside a bit at the edges, so that we
can clearly see some “smaller truths”. Otherwise, the opaque curtain has been
replaced by a thinner curtain through which we can recognize a large portion
of the truth, but only in outline and with no certainty that we are not falling
prey to an optical illusion.

What does that mean concretely? Problems that are viewed as difficult
have not actually been proved to be difficult, but it has been shown that
thousands of problems are essentially equally difficult (in a sense that will
be made precise later). An efficient solution to any one of these thousands of
problems implies an efficient solution to all the others. Or stated another way:
a proof that any one of these problems is not efficiently solvable implies that
none of them is. Thousands of secrets have joined together to form one great
mystery, the unmasking of which reveals all the secrets. In this sense, each
of these secrets is just as central as every other and just as important as the
great mystery, which we will later refer to as the NP # P-problem. In contrast
to many other areas of computer science,

Complerity theory has in the NP # P-problem a central challenge.

The advantage of such an important and central problem is that along the
way to its solution many important results, methods, and even new research
areas are discovered. The disadvantage is that the solution of the central
problem may be a long time in coming. We can learn something of this from
the 350-year search for a proof of Fermat's Last Theorem (Singh (1998) is
recommended for more about that topic). Along the way to the solution, deep
mathematical theories were developed but also many false paths were followed.
Only because of the notoriety of Fermat’s Last Theorem was so much effort
expended toward the solution to the problem. The NP # P-problem has taken
on a similar role in computer science — but with an unfortunate difference:
Fermat’s Last Theorem (which says that there are no natural numbers z, y, 2,
and n with n > 3 such that ™ + y™ = 2™) can be understood by most people.
It is fascinating that a conjecture that is so simple to formulate occupied
the world of mathematics for centuries. For the role of computer science, it
would be nice if it were equally simple to explain to a majority of people the
complexity class P and especially NP, and the meaning of the NP # P-problem.
Alas, this is not the case.

We will see that in the vicinity of the NP # P-problem important and beau-
tiful results have been achieved. But we must also fear that much time may
pass before the NP # P-problem is solved. For this reason, it is not necessarily
the best strategy to aim directly for a solution to the problem. Yao (2001)
compared our starting position to the situation of those who 200 years ago
dreamed of reaching the moon. The strategy of climbing the nearest tree or
mountain brings us closer to the moon, but it doesn’t really bring us any
closer to the goal of reaching the moon. The better strategy was to develop
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ever better means of transportation (bicycles, automobiles, airplanes, rock-
ets). Each of these intermediate steps represented an earth moving discovery.
So it is with complexity theory at the beginning of the third millennium: we
must search for intermediate steps and follow suitable paths, even though we
can never be certain that they will lead to our goal.

Just as those who worked on Fermat’s Last Theorem were “sure” that the
conjecture was true, so it is that today the experts believe that NP P and,
therefore, that all of the essentially equally difficult problems mentioned above
are not efficiently solvable. Why is this so? From the opposite assumption that
NP = P one can derive consequences that contradict all our convictions, even
though they have not been proven false. Strassen (1996) has gone so far as to
elevate the NP # P-conjecture above the status of a mathematical conjecture
and compared it with a physical law (such as E = mc?). This, by the way,
opens up the possibility that the hypothesis that NP # P is true but not
provable with our proof techniques. But at this point we are far from being
able to discuss this background seriously. Our main conclusion is that it is
reasonable to build a theory under the hypothesis that NP # P.

Many results in complezity theory assume solidly based but unproven
hypotheses, such as NP # P.

But what if NP = P? Well, then we must make fundamental modifications
to many of our intuitions. Many of the results discussed here would in this
case have other interpretations, but most would not become worthless. In
general, complexity theory forms an intellectual challenge that differs from
the demands of other areas of computer science. Complexity theory takes its
place in the scientific landscape among those disciplines that

seek to probe the boundaries of what is possible with available re-
sources.

Here the resources are such things as computation time and storage space.
Anyone who is interested in the boundaries of what is (and is not) practically
feasible with computers will find that complexity theory provides important
answers. But those who come to complexity theory only wanting to know
pragmatically if the problem they are interested in can be efficiently solved
have also come to the right place.

1.2 Didactic Background

The main goal of this text is to provide as many as possible with a comfortable
introduction to modern complexity theory. To this end a number of decisions
were made with the result that this text differs from other books on the
subject.

Since complexity theory is a polished theory with many branches, some
selection of topics is unavoidable. In our selection, we have placed a premium
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on choosing topics that have a concrete relationship to algorithmic problems.
After all, we want the importance of complexity theory for modern computer
science to be clear. This comes at the cost of structural and abstract branches
of complexity theory, which are largely omitted. In Section 1.3 we discuss in
more detail just which topics are covered.

We have already discussed the difficulties of dealing with negative results
and the relationship to the area of algorithm design. With a consistent per-
spective that is markedly algorithmic, we will — whenever it is possible and
reasonable — present first positive results and only then derive consequences
of negative results. For this reason, we will often quantify results which are
typically presented only qualitatively.

In the end, it is the concept of nondeterminism that presents a large hurdle
that one must clear in order to begin the study of complexity theory. The usual
approach is to first describe nondeterministic computers which “guess” the
correct computation path, and therefore can not actually be constructed. We
have chosen instead to present randomization as the key concept. Randomized
algorithms can be realized on normal computers and the modern development
of algorithms has clearly shown the advantages of randomized algorithms (see
Motwani and Raghavan (1995)). Nondeterminism then becomes a special case
of randomization and therefore an algorithmically realizable concept, albeit
one with an unacceptable probability of error (see Wegener (2002)). Using this
approach it is easy to derive the usual characterizations of nondeterminism
later.

We will, of course, give complete and formal proofs of our results, but
often there are ugly details that make the proofs long and opaque. The essen-
tial ideas, however, are usually shorter to describe and much clearer. So we
will include, in addition to the proofs, discussions of the ideas, methods, and
concepts involved, in the hope that the interplay of all components will ease
the introduction to complexity theory.

1.3 Overview

In Section 1.1 we simplified things by assuming that a problem is either algo-
rithmically difficult or efficiently solvable. All concepts that are not formally
defined must be uniquely specified. This begins already with the concept of an
algorithmic problem. Doesn’t the difficulty of a problem depend on just how
one formulates the problem and on the manner in which the necessary data
are made available? In Chapter 2 we will clarify essential notions such as al-
gorithmic problem, computer, computation time, and algorithmic complexity.
So that we can talk about some example problems, several important algo-
rithmic problems and their variants will also be introduced and motivated. To
avoid breaking up the flow of the text, a thorough introduction to O-notation
has been relegated to the appendix.



