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Preface

The subject of partial differential equations holds an exciting and special
position in mathematics. Partial differential equations were not consciously
created as a subject but emerged in the 18th century as ordinary differential
equations failed to describe the physical principles being studied. The subject
was originally developed by the major names of mathematics, in particular,
Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel
Bernoulli and Euler who considered potential theory, with later developments
by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier’s
famous work on series expansions for the heat equation. Many of the greatest
advances in modern science have been based on discovering the underlying
partial differential equation for the process in question. James Clerk Maxwell,
for example, put electricity and magnetism into a unified theory by estab-
lishing Maxwell’s equations for electromagnetic theory, which gave solutions
for problems in radio wave propagation, the diffraction of light and X-ray
developments. Schrédinger’s equation for quantum mechanical processes at the
atomic level leads to experimentally verifiable results which have changed the
face of atomic physics and chemistry in the 20th century. In fluid mechanics,
the Navier-Stokes’ equations form a basis for huge number-crunching activities
associated with such widely disparate topics as weather forcasting and the
design of supersonic aircraft.

Inevitably the study of partial differential equations is a large undertaking,
and falls into several areas of mathematics. At one extreme the main interest is
in the existence and uniqueness of solutions, and the functional analysis of the
proofs of these properties. At the other extreme, lies the applied mathematical
and engineering quest to find useful solutions, either analytically or numerically,
to these important equations which can be used in design and construction.
In both this text, and the companion volume (Evans, 1999), the emphasis is
on the practical solution rather than the theoretical background, though this
important work is recognised by pointers to further reading. This approach is

vii



viii Analytic Methods for Partial Differential Equations

based on courses given by the authors while at De Montfort University.

Hence in the first chapter, we start by covering some of the mathemat-
ical background including orthogonal polynomials, special functions such as
Legendre Polynomials and Bessel functions and a brief coverage of complex
variables. The use of characteristics to classify partial differential equations
leads to specific techiques in the following chapters. This is supported by brief
derivations of the wave equation, the heat equation and Laplace’s equation.
The chapter is concluded with some background to generalised functions for
use in the final chapter on Green’s functions.

Chapter 2 is a conventional coverage of separation of variables, applied to
the heat equation and Laplace’s equation in Cartesian, cylindrical polar and
spherical polar coordinates. Chapter 3 is concerned with solutions involving
characteristic curves, and seemed the natural place for first-order equations,
including Charpit’s method for nonlinear first-order equations. The chapter
then moves on to second-order equations and D’Alembert’s solution of the
wave equation, including the method of characteristics in an analytic setting.

Integral transforms are covered in Chapter 4, with work on Fourier’s integral
theorem, Fourier sine and cosine transforms, Fourier complex transforms and
Laplace transforms.

The final chapter is on Green’s functions, and perforce covers the basic work
in this field only. We have of course Green’s birth place (Sneinton Windmill)
and his grave very near to us here. In all these chapters, space limitations had to
be considered and some cuts were made to this end. Topics here include Green’s
functions for the wave equation, the diffusion equation and Laplace’s equation;
Helmholtz and Schrédinger’s equations with applications to scattering theory;
Maxwell’s equations; and Green’s functions in optics with Kirchhoff diffraction
theory. Approximation methods and Born series are also considered briefly.

Most sections have a set of exercises, and fairly complete solutions can be
found in the appendix. Exceptions are small introductory sections and where
a second section is required to make a topic viable for solution and further
investigation by the reader. The exercises and solutions form an important
part of the book and provide much insight to the ideas introduced in the text.

In the last stages of the preparation, the completed manuscript was read
by Endre Siili (Oxford University), and we are very grateful for his general
remarks and detailed comments.

Acknowledgements

We would like to express our thanks to Susan Hezlet who was our first point
of contact with Springer-Verlag. She was instrumental in steering this book
through to its conclusion, though the final stage is in the capable hands of
David Ireland. We are also grateful for the continued support of De Montfort



Preface ix

University, Leicester, and particularly the technical staff who kept our computer
systems running for the duration of the writing process.



Contents

Mathematical Preliminaries

1.1 Introduction ..........c.iiiniinniiiiiii it
1.2 Characteristics and Classification ................ ... ... ...,
1.3 Orthogonal Functions . ......... ... ... i,
1.4 Sturm-Liouville Boundary Value Problems ..................

1.5 Legendre Polynomials
1.6 Bessel Functions......... .. ... ... ... . i il
1.7 Results from Complex Analysis ................ ... ... .....
1.8 Generalised Functions and the Delta Function

1.8.1 Definition and Properties of a Generalised Function.....
1.8.2 Differentiation Across Discontinuities .................
1.8.3 The Fourier Transform of Generalised Functions........
1.8.4 Convolution of Generalised Functions .................
1.8.5 The Discrete Representation of the Delta Function .....

Separation of the Variables
2.1 Introduction ....... ... . i
2.2 The Wave Equation
2.3 The Heat Equation
2.4 Laplace’'sEquation ....... ... ... .. ... il
2.5 Homogeneous and Non-homogeneous Boundary Conditions . ...
2.6 Separation of variables in other coordinate systems ...........

First-order Equations and Hyperbolic Second-order

Equations. ... ... ... e
3.1 Introduction ..............iiiiiiiii i e e
3.2 First-order eqUations. . .........couitiuininneiaenennaannn
3.3 Introduction to d’Alembert’s Method .......................

Xi



xii Analytic Methods for Partial Differential Equations

3.4 d’Alembert’s General Solution .............................
3.5 Characteristics .. ... i e
3.6 Semi-infinite Strings ........... .. ... i
4. Integral Transforms......... ... ... ... .. iiiiiiiineiii..
4.1 Introduction ........ ... ... ... .. .
4.2 Fourier Integrals ....................... e
4.3 Application to the Heat Equation ..........................
4.4 Fourier Sine and Cosine Transforms.........................
4.5 General Fourier Transforms ......................cccouuun...
4.6 Laplacetransform ........... ... ... . i
4.7 Inverting Laplace Transforms ..............................
4.8 Standard Transforms. ...........coniiiniiiiieenen..
4.9 Use of Laplace Transforms to Solve Partial Differential
Equations ......... i

5. Green’s Functions ............... ... ... .. .. i,
5.1 Imtroduction ........ ... ... ... . . . i,
5.2 Green’s Functions for the Time-independent Wave Equation ...
5.3 Green's Function Solution to the Three-dimensional
Inhomogeneous Wave Equation. ............................
5.4 Green’s Function Solutions to the Inhomogeneous Helmholtz
and Schrédinger Equations: An Introduction to Scattering

Theory . ...
5.5 Green’s Function Solution to Maxwell's Equations and

Time-dependent Problems .................................
5.6 Green’s Functions and Optics: Kirchhoff Diffraction Theory . . ..
5.7 Approximation Methods and the Born Series.................
5.8 Green’s Function Solution to the Diffusion Equation ..........
5.9 Green’s Function Solution to the Laplace and Poisson

Equations ...... ...

5.10 Discussion

A. Solutions of Exercises. ............ ... o



1

Mathematical Preliminaries

1.1 Introduction

Partial differential equations emerged when shortcomings with the use of
ordinary differential equations were found in the study of vibrations of strings,
propagation of sound, waves in liquids and in gravitational attraction. Orig-
inally the calculus of partial derivatives was supplied by Euler in a series of
papers concerned with hydrodynamics in 1734. This work was extended by
D’Alembert in 1744 and 1745 in connection with the study of dynamics.

Partial differential equations are the basis of almost every branch of applied
mathematics. Such equations arise from mathematical models of most real life
situations. Hence quantum mechanics depends on Schréodinger’s equations, fluid
mechanics on various forms of Navier—Stokes’ equations and electromagnetic
theory on Maxwell’s equations. Partial differential equations form a very large
area of study in mathematics, and are therefore important for both analytical
and numerical considerations. The analytical aspects are covered in this text
and the numerical aspects in the companion volume, “Numerical methods for
partial differential equations”.

Inevitably there are many aspects of other branches of mathematics which
are pertinent to this work, and the relevant material has been brought together
in this chapter to save long digressions later, and to give an element of
completeness. The first two sections should be covered at the first reading
and form a general introduction to the book as a whole. The later sections deal
with a range of related topics that will be needed later, and may be tackled as
required.

When the differential equations involve only one independent variable such
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as y(t) in the equation for simple harmonic motion given by

dzy

Ez—wc?y.—_o (1.1.1)

this is then called an ordinary differential equation. Standard methods are
available for the analytic solution of particular classes of such equations such
as those with constant coefficients, and these methods are familiar in references
such as Nagle and Saff (1993), or the classic, Piaggio (1950). However, it is very
easy to write an equation whose closed form solution is not expressible in simple
terms such as

— =Iy. (1.1.2)

For such a problem the ordinary differential equation itself defines the solution
function and is used to derive its analytic properties by such devices as series
solutions. Numerical methods come into their own to obtain values of the
solution function and again there is a vast literature on this topic which includes
Lambert (1990) and Evans (1996).

Partial differential equations follow a similar line, but now the dependent
variable is a function of more than one independent variable, and hence the
derivatives are all partial derivatives. In view of ordinary differential equations,
some types lend themselves to analytic solution, and there is a separate
literature on numerical solutions. These aspects form the contents of this book
and its companion volume.

The order of a partial differential equation is the order of the highest
derivative. First-order equations can often be reduced to the solution of
ordinary differential equations, which will be seen later in the considerations
of characteristics. Second-order equations tend to demonstrate the numerical
methods applicable to partial differential equations in general. For the most
part, consideration here is limited to linear problems — the nonlinear ones
constituting current research problems. Linear problems have the dependent
variable and its partial derivatives occurring only to the first degree, hence
there are no products of the dependent variable and its derivatives. Hence the
equation

¢ 9%

322 T oy
is linear. It is called Laplace’s equation, and it will be a major topic in this
book, whereas

=0 (1.1.3)

u 6 du  Fu

ot "oz T T
is the nonlinear Korteweg-de Vries equation. For solutions of this equation, the
method of inverse scattering is employed which is outside the scope of this book,
and may be pursued in Ablowitz and Clarkson (1991). A linear equation is said
to be homogeneous if each term contains either the dependent variable or one of
its derivatives, otherwise it is said to be non-homogeneous or inhomogeneous.

0 (1:1.4)
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The fundamental property of a homogeneous linear problem is that if f; and f;
are solutions then so is” fi + f2. To begin the discussion, three specific physical
applications which prove typical of the problems to be solved are introduced.
A classification of second-order equations is then covered, and each of the three
physical problems falls into a different class in this categorisation.

The first of these physical problems is the heat or diffusion equation which
can be derived by considering an arbitrary volume V. The heat crossing the
boundary will equate to the change of heat within the solid, which results in
the equation

/ peLav = / k grad 6 - dS + / H(r,0,t) dV (1.1.5)
\4 ot S \'2

where dS = ndS with n the unit outward normal to the surface S of V and dS
is a surface element, @ is the temperature, & is the thermal conductivity, p the
density and c the specific heat. H represents any heat generated in the volume
by such action as radioactive decay, electrical heating or chemical action. A

short-hand notation, common in continuum mechanics is used here where grad
is defined by

Ou Ou Ju
grad u = {31’ 5y’ az} (1.1.6)
which generates a vector from a scalar u. This is often written in the condensed
form-grad u = Vu. A further short-hand notation that will be used where
a condensed notation is acceptable is the use of subscripts to denote partial

derivatives. Hence the above definition will become

grad u = {uz, uy,u,} (1.1.7)

With this definition, the 2z dependence may be absent in the case of partial
differential equations in two independent variables which will be the dominant
case in this book. There are two other vector operators which are also used in
this book, namely div and curl, defined by

Oa; Oa; Oaa

diva=V-a=—+—+— 1.
iva=V-a 5 + By + 9z (1.1.8)
and
i j k
curla=Vxa= a% 29% (—% (1.1.9)

ay a2 aj
where a = {a;, a2, a3}. Hence the operator div operates on a vector to generate
a scalar, and the operator curl operates on a vector and generates a vector.
With these definitions in place the derivation of the main equations may now
be continued.

The integral over the surface S can be converted to a volume integral by
the divergence theorem (Apostol, 1974) to give

E
/ o2y = / div (k grad 8)dV + / H(r,6,t) dV. (1.1.10)
\2 ot v v
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However, this balance is valid for an arbitrary volume and therefore the
integrands themselves must satisfy

pc?a—f- = div (k grad 6) + H(r,6,t). T (1.1.11)

In the special but common casé in which k = constant, the diffusion equation
reduces to

% — KV + Q(r, 6,¢) (1.1.12)
with
kK = &
pc
H
@ = pe

Typical boundary conditions for this equation would include the following.

(1) 6(r,t) is a prescribed function of ¢ for every point r on the boundary surface

(ii) The normal flux through the boundary —g—g— is prescribed on S where n is

a normal vector to the surface S.
(lii) The surface radiation is defined over S, for example, by

Z—z = —a(f — 6) (1.1.13)

which is Newton’s law of radiation.

The heat or diffusion equation applies to a very large number of other
physical situations. The diffusion of matter such as smoke in the atmosphere,
or a dye or pollutant in a liquid is governed by Fick’s law

J=-Dgradc (1.1.14)

where D is the coefficient of diffusion and ¢ is the concentration. The vector J
is the diffusion current vector, and therefore ¢ satisfies

g% = div (D grad ¢) (1.1.15)
or s
56 = DV (1.1.16)

if D is a constant. Other physical situations, which are modelled by the diffusion
equation include neutron slowing, vorticity diffusion and propagation of long
electromagnetic waves in a good conductor such as an aerial.

The second of the fundamental physical equations is the wave equation.
Consider a small length of a stretched string as shown in Figure 1.1.
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F +6F

ds

T b+dy

Fig. 1.1.
Then Newton’s second law applied to the small length gives

52
Fsin(y + dv) —Fsim,b-—“pdsa—;; = Fcosydy (1.1.17)
to first order where F is the tension in the string, p is the string density, 1
is the tangential angle of the string to the z-axis, s is the distance coordinate
along the string and y is the displacement from the neutral position. From
elementary calculus,

By
tany = =2 (1.1.18)
and hence
2 Py
sec” Ydy = 52:-—2d:r: (1.1.19)
which yields
%y 3 0%y or
Par = T Vo
52
- 4,9Y
= Fcos 3oz (1.1.20)

where -g—f = cos ¥ as 1 is the angle the tangent makes with the z-axis. However,
for oscillations of small amplitude

2 ay\* -
cos“ P = {1+ (a—x-) } ~1 (1.1.21)

to yield the wave equation in the form

%y 10%
8_11:2 = 'C—é"a? (1.1.22)
with

F.

V4

¢’ = —. 1.1.23
- (1.1.23)
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The third important example is Laplace’s equation which is based on
Gauss’s law in electromagnetism (see Atkin, 1962) namely

/ E-dS=p (1.1.24)
S

where E is the electric field, and p is the charge density with S being the surface
of an arbitary volume. If p = 0, then an application of the divergence theorem,
gives the differential equation

div E = 0. (1.1.25)
However, Maxwell’s equations with no time varying magnetic field yield
curl E=0 (1.1.26)

which is the condition for the field to be irrotational. With this proviso, there
exists a ¢ such that ’

E = grad ¢ _ (1.1.27)

and hence
div grad ¢ =0 (1.1.28)
or
V=0 (1.1.29)

which is Laplace’s equation. The same equation holds for the flow of an ideal
fluid. Such a fluid has no viscosity and being incompressible the equation of
continuity is div q = 0, where q is the flow velocity vector (see Acheson, 1990).
For irrotational flows the equivalent of 1.1.26 holds to allow the use of the
potential function q-= grad¢ and again the defining equation is 1.1.29.

These three major physical problems (1.1.16, 1.1.21 and 1.1.28) are typical
of the main types of second-order linear partial differential equations, and in the
next section mathematical arguments will be used to establish a classification
of such problems.

The following exercises cover the derivation of variations to the main
equations above to allow further physical features to be considered. The
mathematical and numerical solutions to these extended problems fall into
the remit of the solutions for the basic equations.

EXERCISES

1.1 Establish that if a string is vibrating in the presence of air resistance

which is proportional to the string velocity then the wave equation
becomes 82 52 5
u 2 u (1 .
= =C= —-r= with »>0.
82 " oz2 ot
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1.2

1.3

1.4

1.5

1.6

Show that if a vibrating string experiences a transverse elastic force
(such as a vibrating coiled spring), then the relevant form of the
wave equation is

%t 2 0%u

W:c@—ku with k> 0.

If a vibrating string is subject to an external force which is defined
by f(z,t), then show that the wave equation takes the form

9%t 6‘2
a_tg' a a2 + f (IE t)
If there is an external source or sink of heat given by f(z,t) (such
as that due to electrical heating of a rod, chemical heating or
radioactive heating), then the diffusion equation becomes

Ou

Fri V(kVu) + f(z,t).

If the end of a vibrating string is in a viscous liquid then energy is
radiated out from the string to the liquid. Show that the endpoint
boundary condition has the form

Au + du

on at
where n is the normal derivative and b is a constant which is positive
if energy is radiated to the liquid.

When a current flows along a cable with leakage, G, ‘the loss of
voltage is caused by resistance and inductance. The resistance loss
is Ri where R is the resistance and ¢ is the current (Ohm’s Law).
The inductance loss is proportional to the rate of change of current
(Gauss’s Law), which gives the term Li; where L is the inductance.
Hence, the voltage equation is

vz + Ri+ Li, = 0.

The current change is due to capacitance C, and leakage G. These
terms yield

t:+Cv +Gu=0
Deduce the telegraph equation in the form

2
Lca +(GL+RC)—— + RGv Z 4

Find the equation satisfied by the current 1.



