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PREFACE

The subject of partial differential operators is very broad and encompasses many
aspects of analysis. We can convince ourselves of this fact merely by noting that
the study of analytic functions of a complex variable is, in reality, the study of
solutions of a simple system of partial differential equations (the Cauchy—Riemann
equations). Moreover, in our present state of knowledge, we have only scratched the
surface. The more involved scientific theory becomes, the more and varied the
partial differential equations that arise. Other branches of mathematics also
contribute their share. The types of partial differential equations and systems that
are possible can stagger the imagination.

There seems to be a dichotomy in the types of books published on the topic
of partial differential equations. One kind of presentation studies the equations of
classical physics (the wave, heat, and potential energy €quations) and empioys
mostly separation of variables and Fourier series. This part of the theory has been
thoroughly studied and is near completion. There are many excellent books written
on this topic. It can be referred to as the classical theory of partial differential
equations, because the major part of it was known more than fifty years ago.

In the past thirty years there has been a surge of activity in new directions.
Higher order equations and systems have been studied, including those that do
not fall into previously defined categories. Even the concept of a solution has been
broadened, and operators more general than partial differential operators have
Become popular.

xi



Xii PREFACE

The purpose of this book is to introduce the student to the modern techniques
and methods that have been used in the newer theory. I want the student (o et
a taste and feeling for the powerful tools that are used, but I do not want him to
be engrossed in the minute details that can hide the basic ideas behind the methods.
I try to take the middle of the road —to attack problems of greater generality than
those considered in the classical theory, but not to require the most general and
refined machinery available. With respect to the latter, I try to introduce new tools
sparingly, and to use only what is needed to obtain a meaningful (albeit not
negessarily the most powerful) result. In this way I hope the student will be able
to distinguish the trees from the forest.

Another reason for my keeping the background material to a minimum is to
allow students to learn the subject at an earlier stage. The material in this book
has been taught to first year graduate students at Yeshiva University over a ten
year period. Moreover. I have endeavored to present it in such a way as to make

it accessible to undergraduates as well. The reader should have a basic knowledge
of advanced calculus. Lebesgue integration theory is not actually used. It is only
noted that L? is complete. Anyone who is willing to accept this fact needs no
more background in integration theory. The theory of analytic functions of a
complex variable is used only in a few places, and even then only in an elementary
way. All background material in Hilbert space and linear algebra is given where
necessary. It is actually surprising that one can accomplish so much with so little.

A book on partial differential equations can hope to cover only a small
fraction of the basic material that is known. The author must select, but there are
no logical grounds upon which to base such a selection. Many authors choose
what they feel are the most important topics, but the subjectivity of their choices
is fairly obvious.

The present book is no different in this respect I have chosen subject matter
that I feel will motivate the student and introduce him to techniques that have
wide applicability to many other problems, in partlal differential equations as well
as other branches of analysis. Also, I want to give the reader a fair idea of what is
to be expected in other situations, and what methods can be used. In addition, 1
want a uniform theme and outlook ; throughout the book I consider a single linear
partial differential operator of arbitrary order. In each problem I look for existence,
uniqueness, estimates, and regularity of solutions. I try 4o pick analytical tools that
can be used throughout the book, and not only i one or two isolated instances.

- Whenever possible I try to use the same spaces of functions throughout (basically
the L? spaces).

I have tried to give proper credlt to various research articles used in obtaining
material, but [ am sure that I have benefited directly or indirectly from countless
oth<.s. In addition 1 have added, to the bibliography, several books of interest on
the modern theory of partial differential equations.

June, 1976 Martin Schechter
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CHAPTER

OINE
EXISTENCE OF SOLUTIONS

1-1 INTRODUCTION

A partial differential equation is, as the name implies, an equation containing a
partial derivative. Of course, the derivative is to be taken of an unknown function
of more than one variable (if the function were known, we could take the derivative
and it would disappear ; if it depended only on one variable, we would call the
equation an ordinary differential equation). The simplest partial differential
equation is

du(x,y)
ox

where the unknown function u depends on two variables x, y. The solution of
Eq. (1-1) is obviously

0 (1-1)

u(x,y) = g(y) (1-2)

where g(y) is any function of y alone. Although this example is fairly simple, we
should examine it a bit more closely. First of all, what do we mean by a “solution”
of qu (1-1) ? You'say, “That is obvious; we mean simply a function u(x, y), which,
when substituted into Eq. (1-1), makes the equation hold.” However, a little
reflection shows immediately that certain problems arise, albeit that for this
particular equation they are easily solved.

We cannot just substitute any proposed solution into Eq. (1-1): we must start
by differentiating it. Therefore, the first requirement we must impose on u(x, y) in
order that it be a solution of Eq. (1-1) is that it possess a derivative with respect
to x. Second, for what \(alues of x,y is Eq: (1-1) to hold? All real values, or just

1



2 MODERN METHODS IN PARTIAL DIFFERENTIAL EQUATIONS

some? This certainly has to be specified. Next, let us examine our “solution,”
Eq. (1-2). What kind of function is g(y) ? Must it possess a derivative with respect
to y, or can it even be discontinuous ? Or perhaps it need not be a function at all
in the usual sense, but a so-called “distribution” (ignore this last statement if you
have never heard the term).

Another observation is that no matter what kind of functions we admit,
Eq. (1-1) will have many solutions. If a particular solution is desired, then we
must prescribe additional restrictions, or “side conditions.”

The upshot of all this is that with a partial differential equation, we must also
be told where the equation applies and what kind of functions are acceptable as
solutions. This information is usually supplied from the application where the
equation originated. However, there are important cases when the “side condi-
tions” are not clear from the application, and have to be determined by studying
the equation. They are then used to determine “meaningful” situations in the
application.

Needless to say, the number of partial differential equations (and systems of
equations) that can be dreamt up is infinite. The number of equations arising in
applications is not much smaller. To complicate matters, experience has shown us
that a slight modification of an equation (such as the change in sign of a term)
may cause solutions to be completely different in nature, with entirely different
methods required for solving them. It should come as no surprise, therefore, that
as yet we are nowhere near a systematic treatment of partial differential equations.
At best, the present state of knowledge can be described as a conglomeration of
particular methods (the word “tricks” may even be more appropriate) which work
in special cases. Thus, any treatment of partial differential equations, no matter
how extensive, must necessarily restrict itself to a relatively small area of the
subject. ’

We have chosen to deal with linear partial differential equations primarily
because they are the easiest to deal with. The most general linear partial differential
equation involving one unknown function u(xy, ..., x,) can be written in the form
oty

Z a#.,‘..,u,(xla---’xn) 6“‘1‘*""6x“"=f(xl"“’x") (1'3)

pptotp,<m
where summation is taken over all nonnegative integers u,,...,u,, and the a’s
and f are given functions. (Since we have not as yet defined what we mean by a
linear equation, you might as well take Eq. (1-3) to be the definition.)

One look at Eq. (1-3) should be sufficient to discourage anyone from studying
partial differential equations. (If it does not accomplish this effect, I shall do better
later on.) However, once we have survived the initial impact, we see that a bit of
shorthand will do a lot of good. For instance, if we let u stand for the multi-index
(1., p) With norm | u| = py + -+ + p,, and let x stand for the vector (xy,..., X,)
and write

olul

D= —roru—
Oxh1 -+ dxt



EXISTENCE OF SOLUTIONS 3

then Eq. (1-3) becomes

l):': a,(x) D"u(X) f(x) (1-4)
ul<m
which looks much better.

Let us examine Eq. (1-4) a little more closely. The left-hand side consists of a
sum of terms, each of which is a product of a coefficient and a derivative of u.
We may consider it as a differential operator A acting on u. We can then write
Eq. (1-4) more simply as

Au=f (1-5)
where : A=."¥ 1ax) D* y . (1-6)
lel<m :

The operator A is called linear because
Aloyuy + auy) = oy Auy + o Auy (1-7)

holds for all functions uy,u, and all numbers a,, a,. Equation (1- 5) is called linear
because the operator A is linear.

Now what do we mean by a solution of Eq. (1-4) ? Since derivatives up to and
including those of order m are involved, it seems quite natural to require that these
derivatives exist and are continuous, and when they are substituted into Eq. (1-4)
the equality holds. We take this as our present definition. Later on, we shall find
it convenient, if not essential, to modify this definition quite drastically.

Where do we want Eq. (1-4) to hold ? Obviously, it should hold in some subset Q
of(xy,. .., x,) space. This subset has to be specified. Of course, u(x) has to be defined
in a neighborhood of each point of Q in order that the appropriate derivatives
be defined. Since we want our solutions to have continuous derivatives up to
order min Q, we shall give this set of functions a name. We denote the n-dimensional
coordinate space by E".

Definition 1-1 Let Q be a set in E". We let C™(Q) denote the set of all functions
defined in a neighborhood of each point of €, and having all derivatives of
order <m continuous in Q. If a function u is in C™(Q) for each m, then it is
called infinitely differentiable and said to be in C*(Q), i.e.,

C*(Q) = 'fi c™Q)

Form = 0, we write C(Q) = C°(Q). This is the set of functions continuous in Q.

1-2 EQUATIONS WITHOUT SOLUTIONS

The first question that might be asked concerning Eq. (1-4) is whether or not it
has a solution in a given set Q. To make the environment as conducive as possible,
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4 MODERN METHODS IN PARTIAL DIFFERENTIAL EQUATIONS

let us be willing to take Q as the sphere Z, consisting of those points- (X15+ .5 Xp) Of
E" satisfying _ !
xt+-r+xt<r?

where r is some positive number. (The reason for calling Z, a sbhere should be
evident.) Let us even be willing to assume that the function f and the coefficients
of A are infinitely differentiable in Z, (i.e., they are in C*(Z,)). Under such circum-
stances one might reasonably expect a solution of Eq. (1-4) to be guaranteed.
Unfortunately, this is decidedly not the case. A simple example was discovered by
H. Lewy (1957) (pronounoed Layvee), and a study of it is instructive.

The setting is three-dimensional space and we denote the coordinates by x, y, t
(we save the letter z for another quantity). The equation is simple to write down:

Uy + ity + 2(ix — Y)u, = f(x,y,1) (1-8)
A word of explanation is in order. The coefficients of this equation are complex-
valued, while it was hitherto tacitly assumed that the functions and coefficients
considered were real-valued. The following considerations will clarify the matter.

Suppose we allow f to be complex-valued in the sense that there are two bona
fide, real-valued functions f;(x, y,t) and f,(x, y,t), such that f = f; + if;. Itis to be
understood that there need not be any connection between the two functions f; and
f2. We assume the same for any solution u. Then Eq. (1-8) is equivalent to the
system

Upx — Uzy — 2XUy — 2yuy, = fy . (1-9)

Uzx + Ury + 2XUy, — 2yuy = fo - (1-10)
which involves only real functions. It is a system of two equations in two unknowns.
Thus, Eq. (1-8) is just a short way of writing Egs. (1-9) and (1-10). The fact that
Eq. (1-8) is a system, is not a factor in its lack of solutions. We shall also exhibit
a single equation with real f and real coefficients which has no solution.

Now back to Eq. (1-8). To simplify it, we introduce the complex variable
z=x + iy. Then u(x, y,t) is a function of z and ¢. It is an analytic function of z
only if it satisfies the Cauchy-Riemann equations

' Uyx = Uy Uy = —Uzx (1'11)
or their abbreviated form .
_ U, + iu, =0 (1-12)
To abbreviate even further, set
2u, = uy, — iu, 2uz = uy + iu, (1-13)
Then Eq. (1-12) becomes
u;=0 (1-14)
while Eq. (1-8) becomes

uz + izu, = 3f ~(1-19)
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Now let Q be the set x* + y% < a, |t| < b, where a and b are any fixed positive
numbers. We shall show that there is an fe C*(Q) such that Eq. (1-8) has no
solution in C*(Q). Since a and b are arbitrary, it will follow that Eq. (1-8) does not
have a solution in X, for any r > 0.

To carry out our proof, let y(o,7) be a continuously differentiable complex-
valued function of two.real variables g,t which vamshes outside the rectangle
0<a<a,| |<b Set

o(x, y,t) =y(p,1) p=x? +y

Note that ¢ has continuous denvatlves in x, , t space and vanishes outside Q By
the chain rule, we have .

(pz(x.9 Y t) = z‘l’p(ﬂ, t) . (1'16)
Naw suppose there were a solution u of Eq. (1-8) in Q Then,

Jff(u, + izu,)@ dx dydt——JIffga dx dydt

where the bar denotes complex conjugation. Integratmg the left-hand mtegral by
parts (see Sec. 1-3), we have '

= Ifju(w, — iz@,) Jx dy.dt ié‘[J'J‘fé dx dydt

(There are no boundary integrals because ¢ vamshes on the boundary of Q). By
Eq. (1-16) this becomes

_—;; ' 1 ¢
- jjfzu,(% —iy,) dx dy dt = 3 JIf(B dx dy dt (1-17)
" Q y 8 Q -
We now introduce coordinates p, 8 in place of x and y, where
tan 6 = 2
: X

Noting that 2dp df = dx dy, we see that Eq. (1-17) becomes

f J jzu(wp i) dp db dt = J J Ifwdpdodt (1-18)

We'nowset U= J zudo (1-19)
- 0

and assume that f does not depend on 6. Since ¥ also does not depend on 0 we

have"
b a b a
—J’ I U(l//p—i!llr)dpdt=nf jﬁ/fdp-dt
-bJoO -bJO
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We now integrate the left-hand side by parts, obtaining
' b a . _
I J‘ U,+iU,—nf)Yydpdt=0
-bJO .
The next step is to note that iy was any continuously differentiable function which

vanished outside of 0 < p < a, |t| < b. It follows from well-known arguments (see
Sec. 1-3) that ‘

U,+iU,=nf O<p<a |t|<b (1-20)
Next take f = g’(t), where g is a smooth, real-valued function of t alone, and set
Vip,t) = U + nig * (1-21)

Then V,+iV,=0 O0<p<a |t|<b '

and hence Vis an analytic function of p + it on this set. Since u(x, y, t) is continuous
on0<p<a,|t|<b,sois U(p,t). Moreover, U(0,t) = 0 by Eq. (1-19). Thus

Re V(0,) =0 |t|<b , (1-22)

Since V is analyticin 0 < p < g, |t| < b, and its real part vanishes for p = 0, we
know that we can continue V analytically across the line p = 0 (see any good book
on complex variables). In particular, V(0,¢) is an analytic function of ¢ in [t| < b
(in the sense of power series). But V(0,t) = mig(t). Thus, we have shown that in
order for Eq. (1-8) to have a solution when f depends on t alone, it is necessary
that f be an analytic function of t. If we take, for example

e~ t>0
g(t) = {0 t<0 (1-23)

then f has continuous derivatives of all orders, but is not analytic in any neighbor-
hood of t = 0. Hence, Eq. (1-8) can have no solution for such an f.

Now we can give an example of a “real” equation without solutions. Let Au
stand for the left-hand side of Eq. (1-15). Let A4 represent the operator obtained
from A by taking the complex conjugate of all of the coefficients in A.

Then . AAu=$(up + uy) + Xy — yuy) + (X2 + y?)uy, — iu, (1-24)

This, unfortunately, does not quite make the grade because of the last term. But
wedo have

— 0
AA=B—i—
_ ' ot
-where B is a linear operator with real coefficients.
- .0 .0 Y o

Now, I claim that the equation
Bu+u,=f (1-25)
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cannot have a solution when f = ¢ and g is given by Eq. (1-23). For if u were a

" solution of Eq. (1-25), then v = $4(AA)u would be a solution of Eq. (1-8), contra-
dicting our previous result. This example was given by F. Treves (1962).

It might be noted that Eq. (1-25) would be much harder to deal with directly.
The fact that we were allowed to use complex-valued functions brought about a
great savings. Thisis true in many other situations in the study of partial differential
equations.

1-3 INTEGRATION BY PARTS

In Sec. 1-2 we employed an elementary but very useful technique, which we will
review here for the benefit of anyone who is a bit rusty. It is integration by parts.
Let Q be an open, connected set (dlomain) in E" with a piecewise smooth boundary.
This means that the boundary 0Q of Q consists of a finite number of surfaces each
of which can be expressed in the form

Xj= h(xl,...,Xj_1,Xj+1,..‘,x,,)

for some j, with the function h having continuous first derivatives. The closure Q
of Qs the union of Q and its boundary 0Q. Assume that Q is bounded, i.e, that it
is contained in some X for R sufficiently large. If f e C!(Q), then

f a‘—fa’x=J‘ [y do 1<k<n (1-26)
a X 0 :
where dx = dx, ***dx,, y; is the cosine of the angle between the x,-axis and the
outward normal to 0€, and do is the surface element on.dQ. (Note that we use only
one integral sign for a volume integral ; it would not be easy to write n of them.)
Equation (1-26) has many names attached to it, including Gauss, Green, Stokegs,
divergence, etc. For a proof we can refer to any good book on advanced calculus,
e.g., Spivak (1965).

Now suppose u and v have continuous derivatives in Q and their product
vanishes on Q. Then, by Eq. (1-26), we have

jua—vdx=—f a—uudx l1<k<n -(1-27)
Q .

This is the formula employed in Sec. 1-2. It is a very convenient one, since it allows
us to “throw” derivatives from one function to another. It is so convenient that the
first general rule for all people studying partial differential equations is: when you
do not know what to do next, integrate by parts.

There is one feature of Eq. (1-27) which appears harmless, but which has done
more to fill mental institutions with partial differential equations people than any
other single factor, namely, the minus sign. However, there is a way of avoiding it.
The method is as follows. As agreed before, we can allow complex-valued functions
provided we understand that there need not be any connection between their real



