PHYSICAL CHEMISTRY An Advanced Treatise VOLUME X / Solid State Edited by WILHELM JOST # PHYSICAL CHEMISTRY # An Advanced Treatise VOLUME X / Solid State Edited by WILHELM JOST Institut für Physikalische Chemie der Universität Göttingen Göttingen, Germany **ACADEM** Francisco London A Subsidiary of Harcourt prace Jovanovica, a month COPYRIGHT © 1970, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 66-29951 PRINTED IN THE UNITED STATES OF AMERICA #### List of Contributors Numbers in parentheses indicate the pages on which the authors' contributions begin. - L. W. Barr, Solid State Division, A.E.R.E., Harwell, Didcot, Berkshire, England (151) - Richard H. Bube, Department of Materials Science, Stanford University, Stanford, California (515) - G. Ertl, Lehrstuhl B für Physikalische Chemie der Technische Universität, Hannover, Germany (371) - H. Gerischer, Institut für Physikalische Chemie, Technischen Hochschule, Munich, Germany (371) - P. Haasen, Institut für Metallphysik, Universität Göttingen, Göttingen, Germany (69) - M. Kahlweit, Max-Planck-Institut für Physikalische Chemie, Göttingen, Germany (719) - F. A. Kröger, Department of Materials Science, University of Southern California, Los Angeles, California (229) - A. D. Le Claire, Atomic Energy Research Establishment, Harwell, England (261) - A. B. Lidiard, Theoretical Physics Division, A.E.R.E., Harwell, Didcot, Berkshire, England (151) - Otfried Madelung, Institute for Theoretical Physics, University Marburg/ Lahn, Germany (331) - Hiroshi Sato, Scientific Laboratory, Ford Motor Company, Dearborn, Michigan (579) - J. H. Sharp, Research Laboratories, Xerox Corporation, Rochester, New York (435) - M. Smith, Research Laboratories, Xerox Corporation, Rochester, New York (435) - Alarich Weiss, Institute of Physical Chemistry, University of Münster, Münster, Germany (1) - Helmut Witte, Eduard Zintl-Institute for Inorganic and Physical Chemistry, Institute of Technology, Darmstadt, Germany (1) #### Foreword In recent years there has been a tremendous expansion in the development of the techniques and principles of physical chemistry. As a result most physical chemists find it difficult to maintain an understanding of the entire field. The purpose of this treatise is to present a comprehensive treatment of physical chemistry for advanced students and investigators in a reasonably small number of volumes. We have attempted to include all important topics in physical chemistry together with borderline subjects which are of particular interest and importance. The treatment is at an advanced level. However, elementary theory and facts have not been excluded but are presented in a concise form with emphasis on laws which have general importance. No attempt has been made to be encyclopedic. However, the reader should be able to find helpful references to uncommon facts or theories in the index and bibliographies. Since no single physical chemist could write authoritatively in all the areas of physical chemistry, distinguished investigators have been invited to contribute chapters in the field of their special competence. If these volumes are even partially successful in meeting these goals we will feel rewarded for our efforts. We would like to thank the authors for their contributions and to thank the staff of Academic Press for their assistance. HENRY EYRING Douglas HENDERSON WILHELM JOST #### Preface Texts on physical chemistry generally provide a thorough introduction into thermodynamics and statistical mechanics of solid crystals, their optical behavior, the nature of the metallic state, the crystal structure of simple and complicated inorganic and organic crystals. The last decades brought a tremendous increase in our understanding of solid state phenomena outside the traditional scope, and a rapid development of practical applications. This holds especially for the disordered solid state and is perhaps most pronounced in the field of semiconductors. Consequently, in this treatise properties of the ideal solid state are considered sufficiently well known and basically understood, and the emphasis in this volume is laid upon fields with conspicuous recent progress. Thus there are treated advanced methods in crystal structure analysis, including some results of neutron diffraction, dislocations in solids, defects in ionic crystals, order—disorder transformations, fundamentals of semiconductors, including surface effects and organic semiconductors, photoconductivity of semiconductors, and finally precipitation of solids and aging. WILHELM JOST January, 1970 #### Contents of Previous and Future Volumes #### **VOLUME II** - Chapter 1 / CLASSICAL STATISTICAL THERMODYNAMICS John E. Kilpatrick - Chapter 2 / QUANTUM STATISTICAL MECHANICS D. ter Haar - Chapter 3 / CRYSTAL AND BLACKBODY RADIATION Sheng Hsien Lin - Chapter 4 / DIELECTRIC, DIAMAGNETIC, AND PARAMAGNETIC PROPERTIES William Fuller Brown, Jr. - Chapter 5 / ELECTRONS.IN SOLIDS Peter Gibbs - Chapter 6 / REAL GASES C. F. Curtiss - Chapter 7 / Equilibrium Theory of Liquids and Liquid Mixtures Douglas Henderson and Sydney G. Davison - Chapter 8 / ELECTROLYTIC SOLUTIONS H. Ted Davis - Chapter 9 / SURFACES OF SOLIDS L. J. Slutsky and G. D. Halsey, Jr. AUTHOR INDEX—Subject Index #### **VOLUME III** - Chapter 1 / Basic Principles and Methods of Quantum Mechanics D. ter Haar - Chapter 2 / ATOMIC STRUCTURE Sydney G. Davison - Chapter 3 / Valence Bond and Molecular Orbital Methods Ernest R. Davidson - Chapter 4 / Electron Correlation in Atoms and Molecules Ruben Pauncz - Chapter 5 / ATOMIC SPECTRA W. R. Hindmarsh - Chapter 6 / ELECTRONIC SPECTRA OF DIATOMIC MOLECULES R. W. Nicholls - Chapter 7 / ELECTRONIC SPECTRA OF POLYATOMIC MOLECULES Lionel Goodman and J. M. Hollas - Chapter 8 / PI ELECTRON THEORY OF THE SPECTRA OF CONJUGATED MOLEcules - G. G. Hall and A. T. Amos - Chapter 9 / Ionization Potentials and Electron Affinities Charles A. McDowell - Chapter 10 / Electron Donor-Acceptor Complexes and Charge Transfer Spectra - Robert S. Mulliken and Willis B. Person Author Index—Subject Index #### **VOLUME IV** - Chapter 1 / The Variety of Structures Which Interest Chemists S. H. Bauer - Chapter 2 / ROTATION OF MOLECULES C. C. Costain - Chapter 3 / VIBRATION OF MOLECULES Gerald W. King - Chapter 4 / Vibrational Spectra of Molecules J. R. Hall - Chapter 5 / SPECTRA OF RADICALS Dolphus E. Milligan and Marilyn E. Jacox - Chapter 6 / THE MOLECULAR FORCE FIELD Takehiko Shimanouchi - Chapter 7 / Interactions among Electronic, Vibrational, and Rotational Motions Jon T. Hougen - Chapter 8 / ELECTRIC MOMENTS OF MOLECULES A. D. Buckingham - Chapter 9 / Nuclear Magnetic Resonance Spectroscopy R. M. Golding - Chapter 10 / ESR SPECTRA Harry G. Hecht - Chapter 11 / Nuclear Quadruple Resonance Spectroscopy Ellory Schempp and P. J. Bray - Chapter 12 / MÖSSBAUER SPECTROSCOPY N. N. Greenwood - Chapter 13 / Molecular Beam Spectroscopy C. R. Mueller - Chapter 14 / DIFFRACTION OF ELECTRONS BY GASES S. H. BAUER AUTHOR INDEX—SUBJECT INDEX #### VOLUME V - Chapter 1 / GENERAL REMARKS ON ELECTRONIC STRUCTURE E. Teller and H. L. Sahlin - Chapter 2 / The Hydrogen Molecular Ion and the General Theory of Electron Structure - E. Teller and H. L. Sahlin - Chapter 3 / The Two-Electron Chemical Bond Harrison Shull - Chapter 4 / HETEROPOLAR BONDS Juergen Hinze - Chapter 5 / COORDINATION COMPOUNDS T. M. Dunn - Chapter 6 / σ Bonds C. A. Coulson - Chapter 7 / π Bonds C. A. Coulson - Chapter 8 / HYDROGEN BONDING Sheng Hsien Lin - Chapter 9 / MULTICENTERED BONDING Kenneth S. Pitzer - Chapter 10 / METALLIC BONDS Walter A. Harrison - Chapter 11 / RARE-GAS COMPOUNDS Herbert H. Hyman - Chapter 12 / Intermolecular Forces Taro Kihara AUTHOR INDEX—Subject Index #### **VOLUME IXA** - Chapter 1 / Some Aspects of the Thermodynamic and Transport Behavior of Electrolytes - B. E. Conway - Chapter 2 / The Electrical Double Layer . C. A. Barlow, Jr. - Chapter 3 / PRINCIPLES OF ELECTRODE KINETICS Terrell N. Andersen and Henry Eyring - Chapter 4 / Techniques for the Study of Electrode Processes Ernest Yeager and Jaroslav Kuta - Chapter 5 / Semiconductor Electrochemistry Heinz Gerischer - AUTHOR INDEX—Subject Index #### **VOLUME IXB** - Chapter 6 / Gas Evolution Reactions J. Horiuti - Chapter 7 / The Mechanism of Deposition and Dissolution of Metals John O'M. Bockris and Aleksander R. Despić - Chapter 8 / Fast Ionic Reactions Edward M. Eyring - Chapter 9 / ELECTROCHEMICAL ENERGY CONVERSION M. Eisenberg - Chapter 10 / Fused-Salt Electrochemistry G. E. Blomgren - Chapter 11 / BIOELECTROCHEMISTRY - J. Walter Woodbury, Stephen H. White, Michael C. Mackay, William - L. Hardy, and David B. Chang AUTHOR INDEX—Subject Index ### Contents | List of | CONTRIBUTORS | V! | |-----------------|--|------| | Forewo | DRD | vi . | | PREFAC | B | ix | | Conte | NTS OF PREVIOUS AND FUTURE VOLUMES | xv | | Chapt
Crysta | er 1 / Diffraction of X-Rays, Electrons, and Neutrons on the l | Real | | Alaric | h Weiss and Helmut Witte | | | I. | Introduction | 2 | | II. | Diffraction of Radiation by the Perfect Crystal and the Mosaic Crystal | 3 | | III. | Application of the Theory of Diffraction to Crystal Structure Problems | 18 | | IV. | Periodic Disturbances of the Ideal Rigid Lattice | 26 | | v. | Point Defects in Crystals | 32 | | VI. | The Influence of Particle Size on the Diffraction of X-Rays, Neutrons, and Electrons in Solids | 39 | | VII. | The Determination of Lattice Constants | 45 | | VIII. | Chemical Analysis by Diffraction Methods | 49 | | IX. | The Study of Imperfections by Diffraction Methods | 51 | | X. | Textures | 57 | | | References | 59 | | Chap | ter 2 / Dislocations | | | P. Ha | aasen | | | I. | Introduction | 70 | | II. | Topology of a Dislocated Crystal | 73 | | 111. | | | | IV. | Dislocation Arrays. Grain Boundaries | 97 | | V. | · · · · · · · · · · · · · · · · · · · | 107 | | VI. | | | | VII. | | | | VIII. | | | | IX. | | | | | References | 148 | Contents ### Chapter 3 / Defects in Ionic Crystals | I | W | Barr | and | A | R | T. | die | r d | |----------|---|------|-----|---|---|----|-----|-----| | | | | | | | | | | | I. | Introduction | 152 | |-------|--|-----| | II. | Experimental Study of Defects in Crystals. Introduction | 154 | | III. | Concentrations of Defects in Crystals | 156 | | IV. | Mobility of Defects | 161 | | V. | Experimental Methods for the Study of Defects | 162 | | VI. | Numerical Values | 175 | | VII. | Numerical Values: Oxides | 188 | | VIII. | Theoretical Study of Defects in Crystals. Introduction | 192 | | IX. | The Classical Ionic Model | 194 | | X. | Calculation of Defect Properties. General | 198 | | XI. | Vacancy-Formation Energies | 201 | | XII. | Binding Energies | 207 | | XIII. | Activation Energies for Motion of Vacancy Defects | 208 | | XIV. | Interstitial Defects | 212 | | XV. | Conclusion | 219 | | | Appendix | 220 | | | References | 223 | | _ | ter 4 / The Chemistry of Compound Semiconductors Kröger | | | I. | Introduction | 229 | | · II. | Imperfection Chemistry | | | III. | The Formation of Point Defects | 241 | | | References | 258 | | Chap | oter 5 / Correlation Effects in Diffusion in Solids | | | A. D. | . Le Claire | | | I. | Introduction | 261 | | II. | Qualitative Nature of Correlation in Diffusion in Solids | 263 | | III. | Equations for the Coefficient of Diffusion including Correlation | 265 | | IV. | Development of the Expression for the Correlation Factor | 268 | | V. | General Methods for Calculating Correlation Factors | 275 | | VI. | Results and Some Examples of Correlation Factor Calculations | 281 | | VII. | | | | VIII. | | | | IX. | Correlation and the Isotope Effect in Diffusion | | | | References | 328 | | Y 4 4- | | |----------|------| | contents | X111 | | Chapt | er 6 / Semiconductors: Fundamental Principles | |--------------|---| | Otfrie | l Madelung | | I. | Basic Concepts of Semiconductor Physics | | II. | Semiconductivity and Chemical Binding | | III. | The Energy Spectrum of Electrons in a Semiconductor | | IV. | Optical Properties of Semiconductors | | v. | Transport Phenomena | | IV. | Deviations from Thermal Equilibrium | | VII. | Some Applications of Semiconductors | | Chap | ter 7 / Semiconductor Surfaces | | G. Er | tl and H. Gerischer | | • | Introduction | | I. | Introduction | | II. | Electronic Properties | | III. | Surface Reactions | | 111. | Nomenclature | | | References | | . – | ter 8 / Organic Semiconductors Sharp and M. Smith | | I. | Introduction | | II. | Thermal Carrier Generation | | III. | Photogeneration of Carriers | | IV. | Carrier Transport | | - V . | | | VI. | Discussion and Summary | | | References | | Char | ster 9 / Photoconductivity of Semiconductors | | _ | ard H. Bube | | | | | I. | Introduction | | II. | | | III. | | | IV. | | | V. | | | | References | #### Contents | Chapter 10 | Order-Disorder Tran | sformations | |------------|---------------------|-------------| |------------|---------------------|-------------| | 77' | 7 . | \sim | | |------|-----|--------|----| | Hiro | cn, | - | rn | | I. | Introduction | ,, | |-------|--|----------| | | | - | | II. | Definition of Order Parameters | 0 | | III. | Theory of Order-Disorder Transformations | 6 | | IV. | Critical Behavior | 6 | | V. | Order-Disorder Transition in Alloys | 29 | | VI. | Problems Connected with the Nonequilibrium State | 8 | | VII. | Problems Connected with the Order-Disorder Transition in Alloys 6 | 39 | | | References | 4 | | | and the control of th | | | M. K | ahlweit | | | Ĭ. | Precipitation from Metastable Solutions | 19 | | II. | • | 48 | | III. | | 55 | | | | 58 | | | Literature | ~~ | | | | | | Autho | · · · · · · · · · · · · · · · · · · · | | | | or Index | 61 | | Surie | • | 61
76 | ## Chapter 1 # Diffraction of X-Rays, Electrons, and Neutrons on the Real Crystal | Alarich | WEISS | |---------|-------| | ANTO | | HELMUT WITTE | I. | Introduction | 2 | |------|--|----| | II. | Diffraction of Radiation by the Perfect Crystal and the Mosiac Crystal | 3 | | | A. The Geometrical Theory of Diffraction | 4 | | | B. The Kinematic Theory of X-Ray Diffraction | 8 | | | C. The Perfect Crystal | 12 | | | D. The Real Crystal | 12 | | III. | Application of the Theory of Diffraction to Crystal Structure Problems | 18 | | | A. The Determination of Crystal Structures (The Location of Atoms within | | | | the Crystal) | 18 | | | B. The Determination of Electron Distribution | 24 | | IV. | Periodic Disturbances of the Ideal Rigid Lattice | 26 | | | A. The Influence of Thermal Vibrations on the Diffraction in Crystals | 26 | | | B. The Investigation of Long-Range Ordering by Diffraction Methods | 28 | | | C. Magnetic Ordering | 30 | | V. | Point Defects in Crystals | 32 | | | A. Mixed Crystals | 32 | | | B. Nonequilibrium Solid Solutions | 37 | | VI. | The Influence of Particle Size on the Diffraction of X-Rays, Neutrons, and | | | | Electrons in Solids | 39 | | | A. X-Ray Diffraction and Small Particle Size | 39 | | | B. Small-Angle Scattering and Small Particle Size | 42 | | | C. Electron Diffraction and Small Particle Size | 42 | | | D. Neutron Diffraction and Small Particle Size | 44 | | VII. | The Determination of Lattice Constants | 45 | | | A. General Remarks | 45 | | | B. Physical Aberrations | 45 | | | C. Geometrical Aberrations | 46 | | | D. Application of Precision Lattice Constant Determination in Physical | | | | Chemistry | 47 | | III. | Chemical Analysis by Diffraction Methods | 49 | | | A. Qualitative Analysis | 49 | | | B. Quantitative Analysis | 50 | | IX. | The Study | of I | mp | erfe | ctio | ons | by : | Diff | rac | tion | M | etho | ods | | | | 51 | |-----|------------|------|-----|------|------|------|------|------|-----|------|------|------|-----|---|--|--|----| | | A. Point D | efec | ets | | | | | | , | | | | ٠. | | | | 51 | | | B. The Na | ture | of | the | M | osai | c B | lock | Bo | uno | lari | es | | | | | 52 | | X. | Textures | | | | | | | | | | | | | | | | 57 | | | References | | | | | | , | | | | | | | , | | | 59 | #### I. Introduction Diffraction methods are probably the most powerful and most important methods for studying crystallized matter, since the geometrical arrangement of atoms, ions, and molecules in crystals is found using them. Furthermore, the resolving power of the diffraction methods is high enough to reveal the distribution of charges within the unit cells of the crystals. Knowledge of the arrangement of the atoms is the basis of practically all other theoretical and experimental studies of the solid state. It is known from classical optics that in principle diffraction methods are insensitive to the small statistical disturbances of a grating. Therefore the diffraction methods applied to the crystal rattice are basically insensitive to small irregularities in the crystal lattice. This is the reason the use of first-order theories of diffraction applied to crystal structure determination leads to a reasonably good fixation of the positions of the atoms in the elementary cell. As long as only atomic positions and interatomic distances with an accuracy of 0.1% are of interest, first-order diffraction theory can be applied. All periodic disturbances of the ideal lattice such as phonons, the ordering of scattering particles (superstructures, long-range order), and the ordering of spins (magnetic structures) may be studied with considerable success by the different diffraction methods. A careful experimental and theoretical consideration of higher-order diffraction effects also permits the study of complete or partial statistical deviations from the ideal arrangement of the scattering particles within the macroscopic crystal. Following the work by von Laue et al. (1912, 1913) the possibility of studying atomic arrangements in crystals by diffraction methods has been established. Whenever a beam of electromagnetic waves or of particles of appropriate wavelength, i.e., of wavelengths comparable with the atomic distances in the crystal lattice, travels through a crystal diffraction can occur. The resulting three-dimensional diffraction pattern is in geometry and amplitude a Fourier transform of the distribution of the scattering matter in the crystal. This scattering matter may be the electrons (in the case of X-ray diffraction), the electrons and nuclear charges (in the case of electron diffraction); or the nuclei and resultant spins (electron spins and nuclear spins) in the case of neutron diffraction. The two important features of the diffraction pattern, the diffraction