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Preface to the Revised Second Edition

=

This book is an elementary account of the geometry of curves and surfaces.
It is written for students who have completed standard courses in calculus
and linear algebra, and its aim is to introduce some of the main ideas of dif-
ferential geometry.

The language of the book is established in Chapter 1 by a review of the
core content of differential calculus, emphasizing linearity. Chapter 2
describes the method of moving frames, which is introduced, as in elemen-
tary calculus, to study curves in space. (This method turns out to apply with
equal efficiency to surfaces.) Chapter 3 investigates the rigid motions of space,
in terms of which congruence of curves and surfaces is defined in the same
way as congruence of triangles in the plane.

Chapter 4 requires special comment. One weakness of classical differential
geometry is its lack of any adequate definition of surface. In this chapter we
decide just what a surface is, and show that every surface has a differential
and integral calculus of its own, strictly analogous to the familiar calculus of
the plane. This exposition provides an introduction to the notion of differ-
entiable manifold, which is the foundation for those branches of mathemat-
ics and its applications that are based on the calculus.

The next two chapters are devoted to the geometry of surfaces in 3-space.
Chapter 5 measures the shape of a surface and derives basic geometric invari-
ants, notably Gaussian curvature. Intuitive and computational aspects are
stressed to give geometrical meaning to the theory in Chapter 6.

In the final two chapters, although our methods are unchanged, there is a
radical shift of viewpoint. Roughly speaking, we study the geometry of a
surface as seen by its inhabitants, with no assumption that the surface can be
found in ordinary three-dimensional space. Chapter 7 is dominated by cur-
vature and culminates in the Gauss-Bonnet theorem and its geometric and
topological consequences. In particular, we use the Gauss-Bonnet theorem to
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prove the Poincaré-Hopf theorem, which relates the singularities of a vector
field on M to the topology of M.

Chapter 8 studies the local and global properties of geodesics. Full devel-
opment of the global properties requires the notion of covering surface. With
it, we can give a comprehensive survey of the surfaces of constant Gaussian
curvature and prove the theorems of Bonnet and Hadamard on, respectively,
positive and nonnegative curvature.

No branch of mathematics makes a more direct appeal to the intuition
than geometry. I have sought to emphasize this by a large number of illus-
trations that form an integral part of the text.

Each chapter of the book is divided into sections, and in each section a
single sequence of numbers designates collectively the theorems, lemmas,
examples, and so on. Each section ends with a set of exercises; these range
from routine checks of comprehension to moderately challenging problems.

In this revision, the structure of the text, including the numbering of its
contents, remains the same, but there are many changes around this frame-
work. The most significant are, first, correction of all known errors; second,
a better way of referencing exercises (the most common reference); third,
general improvement of the exercises. These improvements include deletion
of a few unreasonably difficult exercises, simplification of others, and fuller
answers to odd-numbered ones.

In teaching from earlier versions of this book, I have usually covered the
background material in Chapter 1 rather rapidly and not devoted any class-
room time to Chapter 3. A short course in the geometry of curves and sur-
faces in 3-space might consist of Chapter 2 (omit Sec. 8), Chapter 4 (omit
Sec. 8), Chapter 5, Chapter 6 (covering Secs. 6-9 lightly), and a leap to Section
6 of Chapter 7: the Gauss-Bonnet theorem. This is essentially the content of
a traditional undergraduate course in differential geometry, with clarification
of the notions of surface and mapping.

Such a course, however, neglects the shift of viewpoint mentioned earlier,
in which the geometric concept of surface evolved from a shape in 3-space to
an independent entity—a two-dimensional Riemannian manifold.

This development is important from a practical viewpoint since it makes
surface theory applicable throughout the range of scientific applications
where 2-parameter objects appear that meet the requisite conditions—for
example, in the four-dimensional manifolds of general relativity.

Such a surface is logically simpler than a surface in 3-space since it is con-
structed (at the start of Chapter 7) by discarding effects of Euclidean space.
However, readers can neglect this transition and—as suggested for the Gauss-
Bonnet theorem—proceed directly to most of the topics considered in the
final two chapters, for example, properties of geodesics (length-minimization
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and completeness), singularities of vector fields, and the theorems of Bonnet
and Hadamard.

For readers with access to a computer containing either the Mathematica
or Maple computation system, I have included some forty computer exer-
cises. These offer an opportunity to amplify the text in various ways.

Previous computer experience is not required. The Appendix contains a
summary of the syntaxes of the most recent versions of Mathematica and
Maple, together with a list of explicit computer commands covering the basic
geometry of curves and surfaces. Further commands appear in the answers
to exercises.

It is important to go, step by step, through the hand calculation of the
Gaussian curvature of a parametrized surface, but once this is understood,
repetition becomes tedious. A surface in R® given only by a formula is seldom
easy to sketch. But using computer commands, a picture of a surface can be
drawn and its curvature computed, often in no more than a few seconds.
Analogous remarks hold for space curves.

Among other applications appearing in the exercises, the most valuable,
since unreachable for humans, is the numerical solution of differential equa-
tions—and the plotting of these solutions.

This book would not have been possible without generous contributions
by Allen B. Altman and Joseph E. Borzellino.

Barrett O’Neill
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Introduction

v

This book presupposes a reasonable knowledge of elementary calculus and
linear algebra. It is a working knowledge of the fundamentals that is actu-
ally required. The reader will, for example, frequently be called upon to use
the chain rule for differentiation, but its proof need not concern us.

Calculus deals mostly with real-valued functions of one or more variables,
linear algebra with functions (linear transformations) from one vector space
to another. We shall need functions of these and other types, so we give here
general definitions that cover all types.

A set S is a collection of objects that are called the elements of S. A set 4
is a subset of S provided each element of A is also an element of S.

A function f from a set D to a set R is a rule that assigns to each element
x of D a unique element f{x) of R. The element f(x) is called the value of f
at x. The set D is called the domain of f; the set R is sometimes called the
range of f. If we wish to emphasize the domain and range of a function f,
the notation f: D — R is used. Note that the function is denoted by a single
letter, say f, while f{x) is merely a value of f.

Many different terms are used for functions—mappings, transformations,
correspondences, operators, and so on. A function can be described in
various ways, the simplest case being an explicit formula such as

Sx)=3x2+1,

which we may also write as x — 3x? + 1.

If both f; and f; are functions from D to R, then f; = f; means that
Ji(x) = fo(x) for all x in D. This is not a definition, but a logical consequence
of the definition of function.

Let f: D — R and g: E — S be functions. In general, the image of fis
the subset of R consisting of all elements of the form f{x); it is usually
denoted by D). If this image happens to be a subset of the domain E of g,
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it is possible to combine these two functions to get the composite function
g(f): D — S. By definition, g(f) is the function whose value at each element
x of D is the element g(f(x)) of S.

If f D — R s a function and A4 is a subset of D, then the restriction of f
to A is the function f]4: 4 — R defined by the same rule as f, but applied
only to elements of A. This seems a rather minor change, but the function
f14 may have properties quite different from f itself.

Here are two vital properties that a function may possess. A function
S D = Ris one-to-one provided that if x and y are any elements of D such
that x # y, then f{x) # f{y). A function f: D — R is onto (or carries D onto
R) provided that for every element y of R there is at least one element x of
D such that f{x) = y. In short, the image of fis the entire set R. For example,
consider the following functions, each of which has the real numbers as both
domain and range:

(1) The function x = x* is both one-to-one and onto.

(2) The exponential function x — ¢* is one-to-one, but not onto.
(3) The function x — x* + x? is onto, but not one-to-one.

(4) The sine function x — sin x is neither one-to-one nor onto.

If a function f: D — R is both one-to-one and onto, then for each element
y of R there is one and only one element x such that f{ix) = y. By defining
S7'(») = x for all x and y so related, we obtain a function f~': R — D called
the inverse of f. Note that the function /' is also one-to-one and onto, and
that izs inverse function is the original function f.

Here is a short list of the main notations used throughout the book, in
order of their appearance in Chapter 1:

Pq - points (Section 1.1)
g real-valued functions (Section 1.1)
VW oo tangent vectors (Section 1.2)
Vi W oo vector fields (Section 1.2)
o B .. curves (Section 1.4)
oW . differential forms (Section 1.5)
FG..................... mappings (Section 1.7)

In Chapter 1 we define these concepts for Euclidean 3-space. (Extension to
arbitrary dimensions is virtually automatic.) In Chapter 4 we show how these
concepts can be adapted to a surface.

A few references are given to the brief bibliography at the end of the book;
these are indicated by initials in square brackets.
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Chapter 1
Calculus on Euclidean Space

v

As mentioned in the Preface, the purpose of this initial chapter is to estab-
lish the mathematical language used throughout the book. Much of what we
do is simply a review of that part of elementary calculus dealing with differ-
entiation of functions of three variables and with curves in space. Our defi-
nitions have been formulated so that they will apply smoothly to the later
study of surfaces.

1.1 Euclidean Space

Three-dimensional space is often used in mathematics without being formally
defined. Looking at the corner of a room, one can picture the familiar process
by which rectangular coordinate axes are introduced and three numbers are
measured to describe the position of each point. A precise definition that
realizes this intuitive picture may be obtained by this device: instead of saying
that three numbers describe the position of a point, we define them to be a
point.

1.1 Definition Euclidean 3-space R* is the set of all ordered triples of real
numbers. Such a triple p = (p,, pa, p3) is called a point of R’.

In linear algebra, it is shown that R® is, in a natural way, a vector space
over the real numbers. In fact, if p=(p,, p2, p3) and q = (q,, ¢, ¢3) are points
of R?, their sum is the point

P+q=(171+q1,pz+qz,p3+q3).
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The scalar multiple of a point p = (p,, P2, ps) by a number a is the point

ap = (ap,, ap,, ap;).

It is easy to check that these two operations satisfy the axioms for a vector
space. The point 0 = (0, 0, 0) is called the origin of R°.

Differential calculus deals with another aspect of R’ starting with the
notion of differentiable real-valued functions on R®. We recall some
fundamentals.

1.2 Definition Let x, y, and z be the real-valued functions on R® such
that for each point p = (p,, pa, p3)

x(p)=p, y(p)=p2 z(p)= p.

These functions x, y, z are called the natural coordinate functions of R®. We
shall also use index notation for these functions, writing

X, =X, X, =Y, X3=2.

Thus the value of the function x; on a point p is the number p,, and so we
have the identity p = (p1, p2, p3) = (x1(p), x2(p), x3(p)) for each point p of R>.
Elementary calculus does not always make a sharp distinction between the
numbers p,, p», p5 and the functions x,, x,, x;. Indeed the analogous distinc-
tion on the real line may seem pedantic, but for higher-dimensional spaces
such as R?, its absence leads to serious ambiguities. (Essentially the same dis-
tinction is being made when we denote a function on R?® by a single letter f,
reserving f(p) for its value at the point p.)

We assume that the reader is familiar with partial differentiation and its
basic properties, in particular the chain rule for differentiation of a compos-
ite function. We shall work mostly with first-order partial derivatives of/dx,
df/dy, df/0z and second-order partial derivatives 9°f/dx%, 9*f/0xdy, ...In a
few situations, third- and even fourth-order derivatives may occur, but to
avoid worrying about exactly how many derivatives we can take in any given
context, we establish the following definition.

1.3 Definition A real-valued function f on R® is differentiable (or infi-
nitely differentiable, or smooth, or of class C*) provided all partial derivatives
of f, of all orders, exist and are continuous.

Differentiable real-valued functions f and g may be added and multiplied
in a familiar way to yield functions that are again differentiable and real-
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valued. We simply add and multiply their values at each point—the formu-
las read

(f +g)p)= f(p)+ g(p). (f2)p)= f(p)e(p)

The phrase “differentiable real-valued function” is unpleasantly long. Hence
we make the convention that unless the context indicates otherwise, “func-
tion” shall mean “real-valued function,” and (unless the issue is explicitly
raised) the functions we deal with will be assumed to be differentiable. We do
not intend to overwork this convention; for the sake of emphasis the words
“differentiable” and “real-valued” will still appear fairly frequently.

Differentiation is always a Jocal operation: To compute the value of the
function df/dx at a point p of R, it is sufficient to know the values of fat all
points q of R’ that are sufficiently near p. Thus, Definition 1.3 is unduly
restrictive; the domain of fneed not be the whole of R®, but need only be an
open set of R®. By an open set @ of R? we mean a subset of R such that if a
point p is in ¢, then so is every other point of R’ that is sufficiently near p.
(A more precise definition is given in Chapter 2.) For example, the set of all
points p = (p,, p2, p3) in R? such that p, > 0 is an open set, and the function
yzlogx defined on this set is certainly differentiable, even though its domain
is not the whole of R>. Generally speaking, the results in this chapter remain
valid if R? is replaced by an arbitrary open set @7 of R®.

We are dealing with three-dimensional Euclidean space only because this is
the dimension we use most often in later work. It would be just as easy to
work with Euclidean n-space R", for which the points are n-tuples p = (p,,

., p») and which has n natural coordinate functions x, ..., x,. All the
results in this chapter are valid for Euclidean spaces of arbitrary dimensions,
although we shall rarely take advantage of this except in the case of
the Euclidean plane R?. In particular, the results are valid for the real line
R' = R. Many of the concepts introduced are designed to deal with higher
dimensions, however, and are thus apt to be overelaborate when reduced to
dimension 1.

Exercises

1. Letf = x’y and g = ysinz be functions on R>. Express the following
functions in terms of x, y, z:

of | og
() /& ®) Srg+s S
(/fg) J .
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2. Find the value of the function f = x*y — y*z at each point:
(@ (1, 1, 1. (b) (3,-1, »).
(C) (a7 11 1 - a)' (d) (t, 12’ t3)

3. Express df/dx in terms of x, y, and z if
(a) f = xsin(xy) + ycos(xz).
(b)f=sing,g =€, h=x*+y + 2%

4. If g), g5, 3, and & are real-valued functions on R’, then

f= h(gl, &2, gz)

is the function such that

S(p) = h(g.(p), g:(p), &:(p)) for all p.t

Express df/dx in terms of x, y, and z,if h = x* — yz and
(a) f = h(x + Y, yza X+ Z)- (b) f = h(e:, e‘ﬂ’, e“').
©) f = h(x, -x, x).

1.2 Tangent Vectors

Intuitively, a vector in R? is an oriented line segment, or “arrow.” Vectors are
used widely in physics and engineering to describe forces, velocities, angular
momenta, and many other concepts. To obtain a definition that is both prac-
tical and precise, we shall describe an “arrow” in R? by giving its starting
point p and the change, or vector v, necessary to reach its end point p + v.
Strictly speaking, v is just a point of R>.

2.1 Definition] A rangent vector v, to R® consists of two points of R its
vector part v and its point of application p.

We shall always picture v, as the arrow from the point p to the point p + v.
For example, if p = (1, 1, 3)and v = (2, 3, 2), then v, runs from (1, 1, 3) to
(3,4, 5)as in Fig. 1.1.

We emphasize that tangent vectors are equal, v, = w,, if and only if they
have the same vector part, v = w, and the same point of application, p = q.

t A consequence is the identity f = fix, y, 2).
1 The term “tangent” in this definition will acquire a more direct geometric meaning in Chapter 4.
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R’ § P+v=1(345)
1 Yp
i
Vp=(1,1,3)
Y
x
FIG. 1.1
“’ V’
P
Yp Wp
P/ vq
q/
FIG. 1.2 FIG. 1.3

Tangent vectors v, and v, with the same vector part, but different points of
application, are said to be parafle! (Fig. 1.2). It is essential to recognize that
v, and v, are different tangent vectors if p # q. In physics the concept of
moment of a force shows this clearly enough: The same force v applied at
different points p and q of a rigid body can produce quite different rotational
effects.

2.2 Definition Let p be a point of R®. The set 7,(R’) consisting of all
tangent vectors that have p as point of application is called the tangent space
of R? at p (Fig. 1.3).

We emphasize that R* has a different tangent space at each and every one
of its points.



