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Preface

This volume presents the Proceedings of the Second International Symposium on
Databases in Parallel and Distributed Systems held from July 2-4, 1990, in Dublin,
Ireland. It contains the eighteen papers selected for presentation and the abstract of the
keynote address by Gene Lowenthal at the Symposium. The Symposium was sponsored
by the IEEE Computer Society, ACM SIGARCH, the British Computer Society, the Irish
Computer Society, and the Office of Naval Research.

The existence of this Symposium, and the success of the First Symposium acknowledge

the growing recognition of the importance of two related challenges for database systems

_.as we enter the 1990s. One is to exploit the potential for flexibility of access to dispersed
‘data which may preexist at nodes of a computer network, or are distributed for some

other reason. The other is to meet the often stringent performance requirements for some
database queries by invoking the support of parallel architectures based on recent
hardware and software developments.

The vitality and importance of these two areas of research is reflected in the general
variety and quality of the papers that were contributed in response to the Call for Papers
issued for the Symposium. Over eighty contributed papers from thirteen countries were
received and they were carefully and thoroughly evaluated on the basis of technical
quality, significance of contribution, readability, and relevance to the Symposium. Credit
for the high quality of the program must be given to all authors who submitted papers,
and to program committee members who devoted time and expertise to reviewing the

papers and specifying the program.

Many of our professional associates devoted a considerable amount of time toward
making the symposium a success. Besides the program committee members, our grateful
thanks are due to the keynote speaker Gene Lowenthal for agreeing to travel to Ireland
and share his vision and experience, to Jane Grimson and Sushil Jajodia for coordinating
the activities of the symposium and interfacing with our sponsors, to Bruce Hillyer for
putting together the tutorials, to John Hughes and Marek Rusinkiewicz for organizing the
publicity material, to Sean Baker for taking care of local arrangements, to Dudley Dolan
for acting as the treasurer, Joe Brandenburg, Theodore Johnson, and Sham Navathe for
providing expert opinion on specific papers, and to Wally Hutchins for preparing this
proceedings. Finally, our special thanks to Shalini Agrawal and Barbara Gouck. Their
help at different stages of the symposium preparation has been essential.

All who contributed to this Symposium are entitled to feel satisfied with the fact that they
have helped meet the challenges of understanding and applying parallel and distributed
techniques and systems to database problems. We believe that this proceedings
represents a valuable collective contribution to the scientific literature on research and
development in this area.

Rakesh Agrawal ‘ David Bell
IBM Almaden Research Center Institute of Informatics
San Jose, California, USA Jordanstown, Co Antrim, Northern Ireland
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KEYNOTE ADDRESS

The Market Environment for Database Machines and Servers

Gene Lowenthal

Cooperative Computing, Inc.
Austin, Texas, U.S.A.

Since the early 70s, the industrial research
community has pursued the elusive dream of a
commercially successful database machine: a
dedicated-function computer based on an
architecture specialized and optimized for
database functions, with price and
performance  characteristics ~ substantially
beyond what can be achieved with general
purpose software and hardware.

During this period, several forces have
conspired to frustrate achievement of this
goal — forces which are for the most part
independent of the DBM research itself.
Chief among these is the accelerating pace of
advances in  microelectronics,  which
simultaneously creates a moving target for
database machine vendors while focusing the
beleaguered computer manufacturer's R&D
resources on trying to keep up with protracted
product life cycles. Meanwhile, successive
generations of relational database software
products are incorporating sophisticated
performance techniques that further challenge
the database hardware vendor.

The database server, in contrast, finds itself in
a far more hospitable environment. At one
time, the database machine (say, in the role of
a "backend") and the database server in-a
network were viewed as minor variations on a
common theme. Now the differences are
understood to be essential, bringing the server
concept in tune with prevailing trends as
surely as the backend is in conflict with them.
The opportunity for database servers is fueled
by the growth of distributed computing and
the strength of the "open systems" movement,
leading to standards at multiple levels of the
relational database architecture.

As database server interface standards (de
facto or otherwise) are established, a market
for these subsystems will emerge which is
both very large and broadly based. But, if the
market for database machines is to expand
beyond narrowly defined niches, product
suppliers must overcome far greater obstacles.
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Parallelism in Relational Data Base Systems:
Architectural Issues and Design Approaches

Hamid Pirahesh, C. Mohan, Josephine Chenyg*, T.S. Liu*, Pat Selinger

Data Base Technology Institute, IBM Almaden Research Center, San Jose, CA 95120, USA
{pirahesh, mohan, pat}@ibm.com

*Data Base Technology Institute, IBM Santa Teresa Labcratory, San Jose, CA 95150, USA

Abstract With current systems, some important
complex queries may take days to complete because
of: (1) the volume of data to be processed, (2) lim-
ited aggregate resources. Introducing parallelism
addresses the first problem. Cheaper, but powerful
computing resources solve the second problem.
According to a survey by Brodie,' only 10% of com-
puterized data is in data bases. This is an argument
for both more variety and volume of data to be
moved into data base systems. We conjecture that
the primary reasons for this low percentage are that
data base management systems (DBMSs) still need
to provide far greater functionality and improved
performance compared to a combination of applica-
tion programs and file systems. This paper ad-
dresses the issues and solutions relating to intra-
query parallelism in a relational DBMS supporting
SQL. Instead of focussing only on a few algorithms
for a subset of the problems, we provide a broad
framework for the study of the numerous issues that
need to be addressed in supporting parallelism ef-
ficiently and flexibly. We also discuss the impact
that parallelization of complex queries has on short
transactions which have stringent response time
constraints. The pros and cons of the shared nothing,
shared disks and shared everything architectures
for parallelism are enumerated. The impact of par-
allelism on a number of components of an industrial-
strength DBMS are pointed out. The different stages
of query processing during which parallelism may
be gainfully employed are identified. The interac-
tions between parallelism and the traditional sys-

CH2895-1/90/0000/0004$01.00 © 1990 IEEE

tems’ pipelining technique are analyzed. Finally,
the performance implications of parallelizing a spe-
cific complex query are studied. This gives us a
range cf sample points for different parameters of
a parallel system architecture, namely, I/0 and com-
munication bandwidth as a function of aggregate
MIPS.

1. Introduction

The widespread adoption of the easy-to-use products
of the relational technology has led to greater ex-
pectaticns on the part of the data base user com-
munity. Support fqr high level ad hoc query lan-
guages like SQL has replaced the weeks or months
of coding required in the case of the prerelational
system: with a few days of coding in order to pro-
duce programs which access the data base man-
agemert system (DBMS) to generate complex re-
ports. Along with this has come the expectation
that the responses to the queries should also be
received faster than before, especially because the
queries may be posed by a user at a terminal rather
than by a batch program, as in the past. Coupled
to this is the fact that the volumes of data to be
dealt with also grow by leaps and bounds as the
years o by and computerization goes into full
swing. Already there are customers who would like
to store more than 100 gigabytes of data in a sing/e
table ard keep it all online all the time! The amount
of data kept in a single large relational data base
is expected to be in the terabyte range in the coming
decade. These trends cause the queries to become
data-int2nsive. Furthermore, there is growing em-
phasis on supporting newer, nonstandard data base
applications like VLS| CAD, Computer Aided Soft-
ware Engineering (CASE), etc., where the volumes
of data are enormous compared to the traditional
business data processing arena [HaSS88].

With competition intensifying in various sectors of
the economy (due to, e.g., deregulation in the airline



industry), and direct-mail marketing becoming more
and more common, the complexity of the queries
that are being posed is also growing. Ad hoc inter-
actions with the new generation DBMSs are com-
monly performed through high-level user interfaces,
allowing complex queries to be specified very easily
by users, where the users may not even be aware
of the complexity of their requests! Often, a high-
level interface query results in many complex DBMS
queries, which must have a short response time
due to the interactive nature of the user interface.
This increases both the complexity and the traffic
rate of DBMS queries. The same phenomenon oc-
curs in interfaces between high level programming
languages, such as Prolog, and DBMSs (i.e., data
base support for logic programming also has this
effect) [Wolf88]. These programming environments
allow programmers to write applications which ‘ini-
tiate many complex DBMS queries. These trends
cause the queries to become logic-intensive.

The processing power of affordable parallel comput-
ers is expected to be over 1000 MIPS shortly. The
combination of massive amounts of data plus enor-
mous processing power creates the opportunity for
much more complex queries. Hence, we expect that
future DBMSs will have to deal with applications
which are increasingly data-intensive and logic-
intensive.

Today’s relational query languages typically do not
have the functions for statistical analysis and struc-
tural (complex objects, record structures, etc.)
expressibility, which are crucial for data summation
and engineering data bases, respectively. We expect
the functionality provided by such query languages
to grow considerably. More of the application logic
will be moved inside the DBMS, both for better
performance (bringing function to data) and for bet-
ter sharing of data among applications (better pro-
tection of data by encapsulation). Note that bringing
function to data would be a good thing even in a
nonparallel system just because it would avoid drag-
ging up to the application level numerous records
which subsequently get disqualified by the applica-
tion when it applies some fancy predicates. Given
that applications tend to be sequential, in a parallel
DBMS, applying the fancy predicates within the
DBMS would allow parallelism to be exploited in
evaluating those predicates also, thereby potentially
reducing the response time tremendously.

DBMSs will have to deal with a much larger set of
data types and operations. From the application

performance viewpoint, this is valuable since it al-
lows more type specific operations to be specified
in search predicates, so that, possibly, massive
amounts of irrelevant data does not pass through
the different layers of the DBMS to the applications.
This is particularly significant since the data rate of
the output from DBMSs is typically much less than
the data rate of storage devices from which data is
retrieved. Operations such as outer join, recursion,
and sampling [OIR089] should be handled by DBMSs
for the same reason. ’

The prablems that the query optimization and the
query execution logic must handle are expanding
because the nature of the queries that DBMSs must
handle is expanding. In most cases, one can hope
to get realtime responses to data and logic intensive
queries only by exploiting parallelism. This may
come as a surprise to some people who might be
led to think that the way to attack the response time
requireiment is to stay with the simpler strategy of
no intra-query parallelism, but use faster processors,
and larger and larger amounts of memory. The
limitations to the improvement of response time via
faster processors and larger memories alone relate
to the following observations:

e Based on the trends of the recent past, it is clear
that the growth in the processing capacity of a
uniprocessor or a closely-coupled multiprocessor
is not going to be sufficient to provide realtime
responses to certain types of complex queries
using such systems. At least today, it appears
that the $/MIPS (Million Instructions Per Second)
cost of the very powerful machines is much higher
than the.$/MIPS cost of smaller, microprocessor-
based machines.

e Even though the price of main memory keeps
declining rapidly and the sizes of the memories
that are attachable to a single processor keep
growing, the volume of data to be handied keeps
growing also. Further, with some architectures,
there are limits on the amount of main memory
that may be attached to a single machine (e.g.,
2GB of real memory due to the 31-bit rea/ memory
addressing used on the IBM/370).

e As the processors become more and more pow-
erful (even in the smaller microprocessor-based
machines), the gap between the CPU processing
speed and the 1/0 capacity of a single device
becornes wider and wider. (We will return to this

! Presented at the ACM-SIGMOD International Conference on Management of Data, Chicago, May 1988.



point in the section “2.5. I/0O Versus. CPU Versus
Communication Parallelism”.) This is at present
necessitating the use of techniques like disk strip-
ing [CABK88, SaGa86] and disk arrays [PaGK88]
to improve the I/0 bandwidth. For a long time,
systems like IBM’s TPF [Hobs87, Scru87, Siwi77]
used disk striping in software to improve
inter-transaction parallelism. But now, striping is
needed for supporting intra-transaction and query
parallelism as well. Disk striping, if done in soft-
ware, already demands parallelism at least at the
1/0 level to access the multiple disks in parallel.

Therefore, in order to gain price-performance ad-
vantages and response time improvements, the
trend is towards building a data base machine con-

sisting of a large number of smaller machines and -

exploiting intra-query parallelism.

2. Overall System Architecture
Options

2.1. Shared Everything Versus Shared
Disks Versus Shared Nothing

One approach to improving the capacity and avail-
ability characteristics of a single-system DBMS is
to use multiple systems. There are three major
architectures in use in the multisystem environment
[Bhid88]: (1) shared disks (SD) or also called data
sharing [DIRY83, Haer88, MoNa%0, MoNP90,
Rahm87, Rahm88, Rahm89b, Shoe86], (2) shared
nothing (SN) or also called partitioned [Bora88a,
Ston86], and (3) shared everything.

With SD, all the disks containing the data bases are
shared amongst the different systems and each sys-
tem has its own buffer pool. Every system that has
an instance of the DBMS executing on it may access
and modify any portion of the data base on the
shared disks. Since each instance has its own buffer
pool and because conflicting accesses to the same
data may be made from different systems, the in-
teractions amongst the systems must be controlled
via various synchronization protocols. This neces-
sitates global locking and protocols for the mainte-
nance of buffer coherency. SD is the approach used
in IBM’s IMS/VS Data Sharing product [CaHS85,
ObSW83, PeSt83, StUW82], TPF product [Hobs87,
Scru87, Siwi77] and the Amoeba research project

[MoNa80, MoNPS0, SNOP85], in DEC’s VAX DBMS?
and VAX Rdb/VMS products [JoRo89, KrlLS86,
ReSW84], and in NEC’s DCS [SMMTG84]. These
systems are using the SD architecture for inter-trans-
action parallelism rather than intra-transaction par-
allelism. ;

With SM, each system owns a portion of the data
base and only that portion may be directly read or
modified by that system. That is, the data base is
partitioned amongst the multiple systems. The kind
of synchronization protocols mentioned before for
SD are not needed for SN. But, a transaction ac-
cessing data in multiple systems would need a form
of two-phase commit protocol (e.g., the Presumed
Abort protocol of [MoLO86]) to coordinate its ac-
tivities. This is the approach taken in Tandem’s
Encompass? and NonStop SQL? [BoPu88, Borr81,
Borr84, EGKS89, Tand87, Tand88], Teradata’s
DBC/1012% [DeSB87, Nech86, Tera88], MCC’s Bubba
[AICo8¢, Bora88b, CABK88], and the University of
Wisconsin’s Gamma [DeGS88, GeDe87, ScDG89].

In the shared everything approach, memory, in ad-
dition to disks, is also shared across the processors.
University of California - Berkeley’s XPRS system
has adopted this approach [SKPO88, StAS89]. It
has been pointed out in [StAS89] that shared ev-
erything has scalability problems. But, it is attractive
within a node of an SD or SN system. It helps
reduce the number of nodes, making system man-
agement and load balancing easier. DB2 [CLSW84,
HaJa84], for example, is able to very nicely exploit
a shared everything machine like an IBM 3090-600J
which has 6 processors.

Arguments in favor of SD are given in [HaSS89] in
the context of complex objects and parallelism. For
complex objects, it is said that partitioning the data,
as is required with SN, is a big problem.

2.2. Transaction Monitors

In discussing an overall architecture, the rcle of
data communications [Duqu87, Sche87, SSSHD87]
and the transaction monitor (like IMS/DC [McGe77],
TUXEDO [AnCK89] or CICS [Serl89]) cannot be ig-
nored. IMost online transactions are executed in the
environment of a transaction monitor. The monitors
provide support for terminal interactions, message
queue rnanagement, logging, program libraries, etc.
They aie in essence an extension of the base op-
erating system.

2 |BM, AS/400, and OS/2 are trademarks of the International Business Machines Corp. Encompass, NonStop SQL, and Tandem are trademarks
of Tandem Computers, Inc. DEC, VAX DBMS, VAX, VAXcluster, and Rdb/VMS are trademarks of Digital Bquipment Corp. DBC/1012 is
a trademark of Teradata Corp. SYBASE is a registered trademark of Sybase, Inc. -



Supporting the transaction monitor and the environ-
ment that it needs is essential even in a parallel
architecture system. Any existing large application
base which relies on such an environment must be
accounted for. Resources (CPU, I/0, communication)
used in the nonDBMS part of transactions (i.e., in
transaction monitors and applications) are very sig-
nificant. Hence, it is important to provide a parallel
environment for both applications and transaction
monitors. Tandem’s Encompass and NonStop SQL
provide such an environment. This is the so called
peer-peer configuration.

If the adopted approach is one in which the monitor
would run on one or more frontend machines and
the actual data management would be done in a
backend (the so called frontend-backend configura-
tion) where parallelism would be exploited using
machines of a different nature from the frontend
machines, then two issues must be addressed. First,
the cost of the interactions between the frontend
and the backend must be taken into account in eval-
uating the performance implications of this approach
on the transaction workload. This division of labor
between the frontend and the backend is bound to
increase the overall pathlength of a transaction.
This increase will be felt especially in the case of
the short transactions of the transaction workload.
One way to attack this problem is to support the
notion of stored procedures (as in the Sybase?
DBMS [Corn88, Epst88]) and make the frontend is-
sue a single call to the backend to execute a se-
quence of SQL statements.

The second issue is related to pushing more appli-
cation functions down into the lower layers of the
DBMS, either in the form of operations on abstract
data types, function libraries (for scientific routines,
statistical routines, etc.), methods on objects stored
in the data base (as in the object-oriented DBMSs),
or rules (as in rule-based systems). This trend es-
sentially pushes for a more uniform runtime envi-
ronment for applications and DBMSs, thereby ailow-
ing functions to move from applications into DBMS
more easily. As a result, it may not be a good idea
to have a very special-purpose operating system in
the backend.

2.3. Interconnection Technologies and
Requirements

The technology used for interconnecting the proces-
sors and the storage devices plays a crucial role in
determining the communication bandwidth that can
be sustained between the processors themselves,
and between the processors and the storage devices.

While fiber-optic [Ross89] switches can sustain high
bandwidths and cover more distances compared to
copper interconnects, costs of fiber-optic interface
and switching devices are still rather high.

In the case of the SD approach, the storage devices
must be attached through a switch since any pro-
cessor must be capable of accessing any of the
devices. This means that the switch should support
high bandwidth communication. The processor to
processor communications will be less in this envi-
ronment, if parallelism for a given transaction is
going to be handled within a system by utilizing a
multiprocessor like the 6-way IBM 3090/600J. Most
of the processor to processor communication is
likely to be messages relating to global locking and
buffer coherency protocols [CaHS85, MoNa30,
MoNP30, ObSW83, Rahm88, ReSW89].

With SN, the devices may be locally attached to the
owning processors, perhaps using cheaper technol-
ogies. In this case, the processor to processor com-
munications can be significant if a given complex
query is accessing data owned by multiple systems.

2.4. Short Transactions and Complex
Querics

It is very important that the system architecture

that is chosen be such that it can accommodate
complex queries as well as short transactions
against the same data. That is, it should be possible
to pose’ ad hoc queries against the same data on
which the “bread and butter” applications of the
customers are also performing online, short trans-
actions which may be updating as well as reading
the data. The former is called the query workioad
and the latter is called the transaction workload. in
modern applications, mostly the transaction work-
load transfers new data from the real world into
data bsses. Hence, they are the producers of the
data from the data base viewpoint. Examples are:
transactions originating from Automated Teller Ma-
chines, point of sale transactions, stock exchange
transactions. Complex queries are usually consum-
ers of data. Sharing between producers and con-
sumers of data is a fundamental phenomenon. Good
performance for the transaction workload must be
guaranieed since those transactions have more
stringent response time constraints.

Traditionally, users have been forced to deal with
this problem of handling the transaction and query
worklozads properly by maintaining two different data
bases on two different systems. One of the data
bases is the most up-to-date one and it is against
that one that the transaction workload is run. The



other data base is an extracted version of the first
one and it is on this extracted data base that the
complex queries are executed. Not all users are
happy with this solution. In addition to the problems
of having to maintain two different systems, the disk
storage requirements are doubled.® Additionally,
there is the expensive extraction process which
needs to be performed periodically and which only
gives out-of-date data to the ad hoc query users.
Some of the advantages of this two data base strat-
egy are: (1) the two types of workloads are on dif-
ferent machines and hence could hopefully be more
easily managed, and (2) since the second data base

is a read-only one, different access paths and buffer

management policies (or even a different DBMS)
may be defined for it to improve the performance
of complex queries. Some of these users with dual
data bases may have an IMS or TPF [Hobs87,
Scru87, Siwi77] system which is running the older
transaction workload and from which they are unable
to migrate away quickly due to performance and/or
application rewrite cost reasons. They may extract
data from such a system and put it into a DB2 or

Teradata system for the benefit of their newer de-

cision support applications.

When both sets of workloads are brought into the
same system, great care must be exercised to en-
sure that the exploitation of parallelism by the com-
plex queries does not consume too much resources
(CPU, 1/0, and memory) at the expense of the short
transactions. This requires that the system, at the
least, support a priority concept for treating different
users or data base requests differently. Some
server-based systems do not have such a concept,
which leads to very unpredictable response times
and wide variances. A resource governor would
also be essential to control “runaway” queries. DB2
V2R1, for example, introduced such a governor for
controlling the resource consumption of dynamic
SQL queries.

There is also a concurrency versus locking overhead
dilemma with respect to mixing these workloads
with very different characteristics. In order to max-
imize concurrency for the transaction workload, the
application would be highly tempted to choose fine-
granularity (e.g., record) locking [MHLPS89,
MoPi90]. But this will make the query workload
incur significant locking overhead since queries in
general access large number of records. Apart from
the overhead concern, the major problem may be
that the locks held by the complex queries will delay

the transaction workload from performing updates.
Typically, this problem is dealt with by executing
the complex queries with the isolation level of cursor
stability (CS - degree 2 consistency of System R
[Gray78]). That is, the read locks are given up as
the cursor moves from one record to the next. Even
though many DBMSs (like DB2, the OS/2 Extended
Edition? Database Manager [ChMy88], SQL/DS

[ChGY81], and NonStop SQL) support CS, the re-

search literature has concentrated only on repeat-
able read (RR -'degree 3 consistency of System R).
More implications of CS on data accesses have
been discussed in [MHWCS0, Moha89, MolLe89].

The locking pathlength overhead problem is normally
addressed using different solutions, with each one
compromising on some functionality or the other.
Two of the solutions are:

® Unlocked Reads Run the queries without locking
and use latches [MHLPS89, MHWC90] to assure
physical consistency of the pages being read. IMS
supports this type of access via what is called GO
processing. Relational systems like Tandem’s
NonStop SQL and IBM’s AS/4002 [AnCo88] also
support such accesses. This solution avoids not
only the locking overhead but also the undesirable
lock conflicts between the two types of workloads.
This approach has the disadvantage that uncom-
mitted data may be exposed to the transactions
that are not obtaining locks. In particular, integrity
constraint violations may be noticed by the un-
locked readers. For statistical queries (e.g., mar-
ket analysis queries), this exposure usually causes
little or no problem. But there is a concern re-
garding queries dealing with structured (e:.g., CAD/
CAM) objects, where inconsistent data close to
the root of the object may result in retrieving a
very different, and possibly invalid set of children
objects. In fact, this problem, to a lesser degree,
also occurs with cursor stability. Retrieval of the
children at two different times during the course
of a query may result in two different sets since
the read data is locked only briefly and the data
might have been updated in between the two re-
trievals.

¢ Transient Versioning In this approach, for data
that is being modified, one or more older versions
of it may be maintained [AgSe89, ChGr85, Reed78,
Weih87]. With this support, the query workload
would be able to read without locking. Just for

3 It should be mentioned that, for large data bases, even if only one copy of the dat: is stored, the total cost of the disks used for storing the
data base is a major portion of the cost of the complete system configuration.
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data that is being modified, a slightly older, but
a committed version of that data will be exposed
to such transactions. The advantage is that the
data base that is being exposed will be internally
consistent. The concerns may be that not all the
exposed data is up to date and the slight increase
in storage consumption and complexity to keep
multiple copies of some of the data. But the major
problem may be that typically in such schemes
the transactions that are not locking are not al-
lowed to do any updates and such transactions
must predeclare themselves to be read-only.

[Moha90] presents a technique, called Commit_LSN,
for eliminating, most of the time, the need for locking
when CS accesses are made. This technique takes
advantage of some information (e.g., the log se-
quence number [MHLPS89, MoPi90]) that is tracked,
for recovery purposes, on every page to conclude,
without locking, that all the data in a page is in the
committed state. It turns out to be of help in reduc-
ing the locking overhead even for update transac-
tions, when record locking is in effect. Concurrency
is also improved in conjunction with index concur-
rency control methods like ARIES/IM [MolLe89].
Many applications of the Commit_LSN technique are
described in detail in [Moha80].

2.5. I/O Versus CPU Versus
Communication Parallelism

Query processing in a parallel environment requires
four major resource types: CPU, I/0, memory, and
communication. Some form of parallelism is needed
for large scale use of any of these resources. Disk
arrays [PaGK88] provide both large amounts of
storage as well as many read/write arms for higher
bandwidth (they may also improve availability by
striping different bits of a byte on different devices
and by storing some parity bits in a similar fashion).
Main memory subsystems with many ports and
many memory modules provide similar features.
Likewise, communication systems with switches at
different levels and many ports provide high band-
width. The degree of parallelism needed in each
resource type (e.g., CPU) depends on the load on
that resource type and the speed of a component
of that resource type (e.g., a CPU). As a result,
different degrees of parallelism are needed for dif-
ferent resource types. Here, we study the relation-

ship between parallelism of two major resource
types in DBMSs: CPU and 1/0.

Our objective function is: minimize the response
time up to a threshold, where the constraint is the
amount of given resources. Threshold is defined as
that response time below which minimization is not
significant. In other words, we ‘want to maximize

ruse of the given l/imited resources to minimize the

response time up to a threshold.* Different degrees
of parallelism may satisfy this objective. Suppose
we can fully utilize the CPU resource with 100 tasks
or with 1000 tasks. One question is what the degree
of parallelism should be. We argue that it is impor-
tant to find the minimal degree of parallelism, while
satisfying our objective function. The higher the
degree of parallelism, the harder the load balancing
would be. By increasing the number of tasks across
which work is being distributed, we are decreasing
the number of tuples that each task handles. In
other words, we have fragmented the processing,
and made it /ess set oriented, hence potentially
compromising one of the major benefits that the
relational model provides us. As a result, the pro-
cessing may become less efficient. For example,
we may lose the efficiency of sequential prefetch
[TeGu84] because each task does not access
enough pages to take full advantage of sequential
prefetch in terms of amortizing the cost of an I/O
call across a large number of pages.

Inefficiency can also arise in accessing data through
nonclustered indices. In sequential processing, we
extract the TIDs (tuple identifiers) of qualified tuples
from the index, sort the TIDs by page IDs, and then
do the 1/0s [MHWC90]. Hence, each relevant data
page is retrieved only once. If many tasks do this
in parallel, often the same page may be retrieved
many times, because, for a given page, more than
one task may be interested in different tuples in it.
Each task has a certain fixed cost associated with
operations such as opening and closing scans, and
sort initialization (e.g., initialization of the tourna-
ment trees when tournament sorts are used). This
cost is multiplied by the degree of task parallelism.
In addition to the wastage of CPU cycles, other re-
sources like memory, and channel capacity may
also be wasted. Contention for disk arms and chan-
nels may also be increased.

We would like to study the relationship between
CPU and I/O parallelism. One concern that we have

4  Maximize must be interpreted more carefully in the context of a multiuser environment. As we see shortly, sometimes too much parallelism
may lead to too much wastage of resources, and may not decrease the response time significantly. We must avoid these cases for the benefit of

other users of the system.



is that often there is a significant mismatch between
the degree of parallelism needed for CPU and that
needed for the I/O subsystem. One reason for this
is that the speed of 1/0 devices has not increased
as fast as that of CPUs. To study the relationship
between 1/0 and CPU parallelism, consider the prob-
lem of accessing, directly or through indices, the
base tables. If all the data fits in- main_memory,
then each task is CPU bound, and we need only one
task per CPU. Hence, degree of parallelism is the
number of available CPUs. If data is on disks, the
tasks can be 1/0 bound if one disk arm at a time is
used. This causes a significant mismatch between
the degrees of parallelism needed for CPU and /0.
The reason is that the speeds of the available disks
are too low compared to the power of the currently
available CPUs, especially the mainframe ones.
Therefore, we need to have numerous disk arms,
as in disk arrays, to keep up with each CPU. Let’s
go through an example. We assume that the pro-
cessing capacity of each CPU is 30 MIPS. We con-
sider two types of disks:

1. Slower disks: 3MBPS (megabytes per second)
bandwidth; 20 ms average seek plus search
(i.e., rotational latency) time.

2. Faster disks: higher bandwidth, moderately
‘lower seek plus search time. Let’s assume that
these disks are an order of magnitude better in
bandwidth (30MBPS) and half order of magni-
tude better in average seek plus search time
(7 ms). :

Let’s consider two types of queries:

® Type 1: complex queries with numerous sequential
table scans;

® Type 2: complex queries with numerous TID list
data accesses, as explained above (mostly doing
random [/Os). "

The second type of access is chosen when the table
is very big and the predicates are very selective.
Hence, we may be heavily using even nonclustered
indices (one index, or several, with index ANDing
and/or ORing [MHWCS0]). The queries of the first
type mainly do sequential 1/0s. Hence, for each 1/0O,
the seek/search cost is incurred once for a set of

pages (e.g., 64 pages). In this case, the limiting
factor is mostly the data transfer bandwidth of the
disk. The second type of queries mainly do random
I/Os. Hence, the seek/search time delay is usually
incurred for every page. In this case, the seek/
search time is the limiting factor.

Let’s study this more quantitatively. Suppose, for a
given query, let L be the total pathlength and / the
total number of pages retrieved from disk. L includes
CPU instructions for performing 1/0, locking, predi-
cate evaluation, sort, join, etc. The ratio L /! is the
average number of instructions of CPU processing
incurred for each page retrieved from the disk. This
ratio is a good means of characterizing a workload,
and we use it to study the balance between CPU
and 1/0. The value of this ratio depends on the type
of a query. Later, in the section “5. A More Quan-
titative Analysis”, we will discuss the details of the
performance of a complex query, called 5fanj. For
this query, which is of type 1, the ratio L // is about
20K. Fecr queries that have mostly very selective
predicates supported by indices, this ratio is typically
less than 1K. These queries perform a significant
amount of random I/Os. They essentially retrieve
one tuple out of every accessed page. For queries
that perform significant amount of random 1/Os and
also significant amount of processing (e.g., sorts,

joins, aggregation, etc.) on the retrieved data, the

ratio increases significantly.

In a mi>ed query and transaction workload, we must
also consider the effect of transaction workloads on
the balance of CPU and I/O. Transaction workloads
also perform a significant amount of random 1/Os.
The L/! ratio for TP1 transactions [Anon85] is
roughly 50K.® As we will comment later, these ratios
also depend on the buffer sizes. [FTSN89] reports
15 to 45 1/Os per second per MIPS for users of DEC
computars. Assuming a page size of 4K bytes, we
get L [/ equal to 13 to 34 (this is after converting
VAX MIPS to IBM/370 MIPS using the formula given
in the reference).

Figure 1 gives the degree of I/O parallelism for each
CPU (more precisely, for a task that fully utilizes a
CPU) fcr different L [/ ratios.

For L |1 =20 (5fanj type 1 query), the ratio of degree
of parallelism of I/O and CPU is about 2.5 for slower
disks. This number is about 0.3 for faster disks. In
this case, there is not much mismatch between the

S Typically, accessing the account table incurs one 1/O for the index leaf page, and one 1/O for the data page. Updating of the account table

incurs one 1/O. Each transaction benefits from the caching of teller and branch table:. Also, 1/Os for the journal table and log (assuming group

*  commit'[GaKi85] is used) are compensated across multiple: transactions. The actu.al number of I/Os for this heavily depends on the buffer
sizes. If we assume one more 1/O for all of these, and a pathlength of about 200K nstructions, we get 50K per 1/0.



