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Preface

This book is a self-contained introduction to real analysis assuming only basic
notions on limits of sequences in R, manipulations of series, their convergence
criteria, advanced differential calculus, and basic algebra of sets.

The passage from the setting in RV to abstract spaces and their topologies is
gradual. Continuous reference is made to the RV setting, where most of the basic
concepts originated.

The first seven chapters contain material forming the backbone of a basic training
in real analysis. The remaining two chapters are more topical, relating to maximal
functions, functions of bounded mean oscillation, rearrangements, potential theory,
and the theory of Sobolev functions.

Even though the layout of the book is theoretical, the entire book and the last
chapters in particular concern applications of mathematical analysis to models of
physical phenomena through partial differential equations.

The preliminaries contain a review of the notions of countable sets and related
examples. We introduce some special sets, such as the Cantor set and its variants,
and examine their structure. These sets will be a reference point for a number of
examples and counterexamples in measure theory (Chapter II) and in the Lebesgue
differentiability theory of absolute continuous functions (Chapter IV). This initial
chapter also contains a brief collection of the various notions of ordering, the
Hausdorff maximal principle, Zorn’s lemma, the well-ordering principle, and their
fundamental connections.

These facts keep appearing in measure theory (Vitali’s construction of a Lebesgue
nonmeasurable set), topological facts (Tychonov’s theorem on the compactness of
the product of compact spaces; existence of Hamel bases), and functional anal-
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ysis (Hahn-Banach theorem; existence of maximal orthonormal bases in Hilbert
spaces).

Chapter I is an introduction to those basic topological issues that hinge upon
analysis or that are, one way or another, intertwined with it. Examples include
Urysohn’s lemma and the Tietze extension theorem, characterization of compact-
ness and its relation to the Bolzano—-Weierstrass property, structure of the compact
sets in RY, and various properties of semicontinuous functions defined on compact
sets. This analysis of compactness concems the structure of the compact subsets
of the space of continuous functions (Chapter IV) and the characterizations of the
compact subsets of the spaces L?P(E) forall 1 < p < oo (Chapter V).

The Tychonov theorem is proved, keeping in mind its application in the proof of
the Alaoglu theorem on the weak* compactness of closed balls in a linear, normed
space.

We introduce the notions of linear, topological vector spaces and of linear maps
and functionals and their relation to boundedness and continuity.

The discussion turns quickly to metric spaces, their topology and their struc-
ture. Examples are drawn mostly from spaces of continuous or continuously dif-
ferentiable functions or integrable functions. The notions and characterizations of
compactness are rephrased in the context of metric spaces. This is preparatory to
characterizing the structure of compact subsets of L?(E).

The structure of complete metric spaces is analyzed through Baire’s category
theorem. This plays a role in subsequent topics, such as an indirect proof of the
existence of nowhere-differentiable functions (Chapter IV), in the structure of Ba-
nach spaces (Chapter VI), and in questions of completeness and noncompleteness
of various topologies on C3°(E) (Chapter VII).

Chapter II is a modern account of measure theory. The discussion starts from
the structure of open sets in RY as sequential coverings to construct measures and
a brief introduction to the algebra of sets. Measures are constructed from outer
measures by the Carathéodory process. The process is implemented in specific
examples such as the Lebesgue-Stieltjes measures in R and the Hausdorff mea-
sure. The latter seldom appears in introductory textbooks in real analysis. We have
chosen to present it in some detail because it has become, in the past two decades,
an essential tool in studying the fine properties of solutions of partial differential
equations and systems. The Lebesgue measure in R¥ is introduced directly start-
ing from the Euclidean measure of cubes, rather than regarding it, more or less
abstractly, as the N-product of the Lebesgue measure on R. In RV we distinguish
~ between Borel sets and Lebesgue-measurable sets, by cardinality arguments and
concrete counterexamples.

For general measures, emphasis is put on necessary and sufficient criteria of
measurability in terms of G5 and F,. In this we have in mind the operation of
measuring a set as an approximation process. From the applications point of view
one would like to approximate the measure of a set by the measure of measurable
sets containing it and measurable sets contained into it. The notion is further
expanded in the theory of Radon measures and their regularity properties.
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It is also further expanded into the covering theorems although these represent
an independent topic in their own right. The Vitali covering theorem is presented
in its proof due to Banach. The Besicovitch covering is presented by emphasizing
its value for general Radon measures in R, For both we stress the measure-
theoretical nature of the covering as opposed to the notion of covering a set by
inclusion.

Coverings have made possible an understanding of the local properties of so-
lutions of partial differential equations, chiefly the Harnack inequality for non-
negative solutions of elliptic equations. For this reason, in the “Problems and
Complements” of this chapter, we have included various versions of the Vitali and
Besicovitch covering theorems.

Chapter III introduces the Lebesgue mtegral The theory is preceded by the
notions of measurable functions, convergence in measure, Egorov’s theorem on
selecting almost-everywhere convergent subsequences from sequences convergent
in measure, and Lusin’s theorem characterizing measurability in terms of quasi-
continuity. This theorem is given relevance as it relates to measurability and local
behavior of measurable functions. It is also a concrete application of the necessary
and sufficient criteria of measurability of the previous chapter.

The integral is constructed starting from nonnegative simple functions by the
Lebesgue procedure. Emphasis is placed on convergence theorems and the Vitali
theorem on the absolute continuity of the integral. The Peano—Jordan and Riemann
integrals are compared to the Lebesgue integral by pointing out differences and
analogies.

The theory of product measures and the related integral is developed in the
framework of the Carathéodory construction by starting from measurable rectan-
gles. This construction provides a natural setting for the Fubini-Tonelli theorem
on multiple integrals.

Applications are provided ranging from the notion of convolution, the conver-
gence of the Marcinkiewicz integral, to the interpretation of an integral in terms
of the distribution function of its integrand.

The theory of measures is completed in this chapter by introducing the notion of
signed measure and by proving Hahn’s decomposition theorem. This leads to other
natural notions of decompositions such as the Jordan and Lebesgue decomposition
theorems.

It also naturally suggests other notions of comparing two measures such as the
absolute continuity of a measure v with respect to another measure . It also
suggests representing v, roughly speaking, as the integral of u by the Radon—
Nikodym theorem.

Relating two measures finds application in the Besicovitch-Lebesgue theorem,
presented in the next chapter, and connecting integrability of a function to some
of its local properties.

Chapter IV is a collection of applications of measure theory to issues that were at
the root of modern analysis. What does it mean for a function of one real variable to
be differentiable? When can one compute an integral by the fundamental theorem
of calculus? What does it mean to take the derivative on an integral?
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These issues motivated a new way of measuring sets and the need for a new
notion of integral. :

The discussion starts from functions of bounded variation in an interval and their
Jordan’s characterization as the difference of two monotone functions. The notion
of differentiability follows naturally from the definition of the four Dini numbers.
For a function of bounded variation, its Dini numbers, regarded as functions, are
measurable. This is a remarkable fact due to Sierpiriski and Banach.

Functions of bounded variations are almost-everywhere differentiable. This is
a celebrated theorem of Lebesgue. It uses in an essential way Vitali’s covering
theorem of Chapter 1.

We introduce the notion of absolutely continuous functions and discuss similar-
ities and differences with respect to functions of bounded variation. The Lebesgue
theory of differentiating an integral is developed in this context. A natural related
issue is that of the density of a Lebesgue-measurable subset of an interval. Almost
every point of a measurable set is a density point for that set. The proof uses a re-
markable theorem of Fubini on differentiating, term by term, a series of monotone
functions.

Similar issues for functions of N real variables are far more delicate. We present
the theory of differentiating a measure v with respect to another u by precisely
identifying such a derivative in terms of the singular part and the absolutely con-
tinuous part of u with respect to v. The various decompositions of measures of
Chapter III find their natural application here along with the Radon-Nikodym
theorem.

The pivotal point of the theory is the Besicovitch-Lebesgue theorem asserting
that the limit of the integral of a measurable function f when the domain of
integration shrinks to a point x actually exists for almost all x and equals the value
of f at x. The shrinking procedure is achieved by using balls centered at x, and
the measure can be any Radon measure. This is the strength of the Besicovitch
covering theorem. We discuss the possibility of replacing balls with domains that
are, roughly speaking, comparable to a ball.

As aconsequence, almost every point of an N-dimensional Lebesgue-measurable
set is a density point for that set.

The final part of the chapter contains an array of facts of common use in real
analysis. These include basic facts on convex functions of one variable and their
almost-everywhere double differentiability. In the “Problems and Complements,”
we introduce the Legendre transform and indicate the main properties and features.

We present the Ascoli—Arzela theorem, keeping in mind a description of compact
subsets of spaces of continuous functions.

We also include a theorem of Kirzbraun and Pucci extending bounded, contin-
uous functions in a domain into bounded, continuous functions in the whole R¥
with the same upper bound and the same concave modulus of continuity. This
theorem does not seem to be widely known.

The final part of the chapter contains a detailed discussion of the Stone-Weier-
strass theorem. We present first the Weierstrass theorem (in N dimensions) as
a pure fact of approximation theory. The polynomials approximating a continu-
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ous function f in the sup-norm over a compact set are constructed explicitly by
means of the Bernstein polynomials. The Stone theorem is then presented as a
way of identifying the structure of a class of functions that can be approximated
by polynomials.

Chapter V introduces the theory of LP spaces for | < p < oo. The basic
inequalities of Holder and Minkowski are introduced and used to characterize the
norm and related topology of these spaces. A discussion is provided to identify
elements of L?(E) as equivalence classes.

We also introduce the LP(E) spaces forQ < p < 1 and the related topology. We
establish that there are no convex open sets except L? (E) itself and the empty set.

We then turn to questions of convergence in the sense of L (E) and their com-
pleteness (Riesz—Fischer theorem) as well as issues of separating such spaces by
simple functions. The latter serves as a tool in the notion of weak convergence of
sequences of functions in LP (E). Strong and weak convergence are compared and
basic facts relating weak convergence and convergence of norms are stated and
proved.

The “Problems and Complements” section contains an extensive discussion
comparing the various notions of convergence.

We introduce the notion of functional in L7 (E) and its boundedness and con-
tinuity and prove the Riesz representation theorem, characterizing the form of all
the bounded linear functionals in LP(E) for I < p < oo. This proof is based on
the Radon—-Nikodym theorem and as such is measure-theoretical in nature.

We present a second proof of the same theorem based on the topology of L?. The
open balls that generate the topology of L? (E) are strictly convex for 1 < p < oo.
This fact is proved by means of the Hanner and Clarkson inequalities, which, while
technical, is of interest in their own right.

The Riesz representation theorem permits one to prove that if E is a Lebesgue-
measurable set in RY, then LP(E) for 1 < P < 00, are separable. It also permits
one to select weakly convergent subsequences from bounded ones. This fact holds
in general, reflexive, separable Banach spaces (Chapter VI). We have chosen to
present it independently as part of L theory. It is our point of view that a good
part of functional analysis draws some of its key facts from concrete spaces such
as spaces of continuous functions, the L” space, and the spaces £,.

The remainder of the chapter presents some technical tools regarding L? (E)
for E a Lebesgue-measurable set in RV, to be used in various parts of the later
chapters. These include the continuity of the translation in the topology of LP (E),
the Friedrichs mollifiers, and the approximation of functions in L? (E) with C*®(E)
functions. It also includes a characterization of the compact subsets in LP(E).

Chapter VI is an introduction to those aspects of functional analysis closely
related to the Euclidean spaces R, the spaces of continuous functions defined on
some open set E C RY, and the spaces LP(E). These naturally suggest the no-
tion of finite-dimensional and infinite-dimensional normed spaces. The difference
between the two is best characterized in terms of the compactness of their closed
unit ball. This is a consequence of a beautiful counterexample of Riesz.
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The notions of maps and functionals is rephrased in terms of the norm topology.
In RY one thinks of a linear functional as an affine function whose level sets are
hyperplanes through the origin. Much of this analogy holds in general normed
spaces with the proper rephrasing. '

Families of pointwise equibounded maps are proven to be uniformly equi-
bounded as an application of Baire’s category theorem.

We also briefly consider special maps such as those generated by Riesz potentials
(estimates of these potentials are provided in Chapter IIT) and related Fredholm
integral equations.

Proofs of the classical open mapping theorem and closed graph theorem are
presented as a way of inverting continuous maps to identify isomorphisms out of
continuous linear maps.

The Hahn-Banach theorem is viewed in its geometrical aspects of separating
closed convex sets in a normed space and of “‘drawing” tangent planes to a con-
vex set.

These facts all play a role in the notion of weak topology and its properties.
Mazur’s theorem on weak and strong closure of convex sets in a normed space
is related to the weak topology of the LP(E) spaces. These provide the main
examples, as convexity is explicit through Clarkson's inequalities.

The last part of the chapter gives an introduction to Hilbert spaces and its
geometrical aspects through the parallelogram identity. We present the Riesz rep-
resentation theorem of functionals through the inner product. The notion of basis
is introduced and its cardinality is related to the separability of a Hilbert space.
We introduce orthonormal systems and indicate the main properties (Bessel’s in-
equality) and some construction procedures (Gram—-Schmidt). The existence of a
complete system is a consequence of the Hausdorff maximum principle. We also
discuss various equivalent notions of completeness.

Chapter VII is about spaces of real-valued, continuous functions, differentiable -
functions, infinitely differentiable functions with compact support in some open
set E ¢ R", and weakly differentiable functions. Together with the L? (E) spaces,
these are among the backbone spaces of real analysis.

We prove the Riesz representation theorem for continuous functions of compact
support in RY. The discussion starts from positive functionals and their repre-
sentation. Radon measures are related to positive functionals and bounded, signed
Radon measures are related to bounded linear functionals. Analogous facts hold for
the space of continuous functions with compact support in some open set E C R¥.

We then turn to making precise the notion of a topology for C5°(E). Complete-
ness and noncompleteness are related to metric topologies in a constructive way.
We introduce the Schwartz topology and the notion of continuous maps and func-
tionals with respect to such a topology. This leads to the theory of distributions
and its related calculus (derivatives, convolutions, etc., of distributions).

Their relation to partial differential equations is indicated through the notion
of fundamental solution. We compute the fundamental solution for the Laplace
operator also in view of its applications to potential theory (Chapter VIII) and to
Sobolev inegualities (Chapter IX). .
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The notion of weak derivative in some open set E C RY is introduced as
an aspect of the theory distributions. We outline their main properties and state
and prove the (by now classical) Meyers—Serrin theorem. Extension theorems
and approximation by smooth functions defined in domains larger than E are
provided. This leads naturally to a discussion of the smoothness properties of 3 E
for these approximations and/or extensions to take place (cone property, segment
property, etc.).

We present some calculus aspects of weak derivatives (chair rule, approxima-
tions by difference quotients, etc.) and turn to a discussion of WL(E) and its
relation to Lipschitz functions. For the latter we conclude the chapter by stating
and proving the Rademacher theorem.

Chapter VII is a collection of topics of common use in real analysis and its
applications. First is the Wiener version of the Vitali covering theorem (commonly
referred to as the “simple version” of Vitali’s theorem). This is applied to the notion
of maximal function, its properties, and its related strong-type L? estimates for
I < p < oo. Weak estimates are also proved and used in the Marcinkiewicz in-
terpolation theorem. We prove the by-now-classical Calderén-Zygmund decom-
position theorem and its applications to the space functions of bounded mean
oscillation (BMO) and the Stein—Fefferman L? estimate for the sharp maximal
function.

The space of BMO is given some emphasis. We give the proof of the John-
Nirenberg estimate and provide its counterexample. We have in mind here the
limiting case of some potential estimates (later in the chapter) and the limiting
Sobolev embedding estimates (Chapter IX). v

We introduce the notion of rearranging the values of functions and provide their
properties and the related notion of equimeasurable function. The discussion is
for functions of one real variable. Extensions to functions of N real variables are
indicated in the “Problems and Complements.”

The goal is to prove the Riesz convolution inequality by rearrangements. The
several existing proofs (Riesz, Zygmund, Hardy-Litttewood—Polya) all use, one
way or another, the symmetric rearrangement of an integrable function.

We have reproduced here the proof of Hardy-Littlewood-Polya as it appears in
their monograph [24]. In the process we need to establish Hardy’s mequallty, of
interest in its own right.

The Riesz convolution inequality is presented in several of its variants, leading
to an N-dimensional version of it, through an application of the continuous version
of the Minkowski inequality. é

Besides the intrinsic interest of these inequalities, what we have in mind here
is to recover some limiting cases of potential estimates and their related Sobolev
embedding inequalities.

The final part of the chapter introduces the Riesz potentials and their related
L? estimates, including some limiting cases. These are on the one hand based on
the previous Riesz convolution inequality, and, on the other hand, on Trudinger’s
version of the BMO estimates for particular functions arising as potentials.
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Chapter IX provides an array of embedding theorems for functions in Sobolev
spaces. Their importance to analysis and partial differential equations cannot be
underestimated. Although good monographs exist [1, 39] I have found it laborious
to extract the main facts, listed in a clean manner and ready for applications.

We start from the classical Gagliardo-Nirenberg inequalities and proceed to
Sobolev inequalities. We have made an effort to trace, in the various embedding
inequalities, how the smoothness of the boundary enters in the estimates. For
example, whenever the cone condition is required, we trace back in the various
constants the dependence on the height and the angle of the cone. We present the
Poincaré inequalities for bounded, convex domains E and trace the dependence
of the various constants on the “modulus of convexity” of the domain through the
ratio of the radius of the smallest ball containing E and the largest ball contained
in E. The limiting case p = N of the Sobolev inequality builds on the limiting
inequalities for the Riesz potentials, and it is preceded by an introduction to Morrey
spaces and their connection to BMO.

The characterization of the compact subsets of L?(E) (Chapter V) is used to
prove Reillich’s theorem on compact Sobolev inequalities.

We introduce the notion of trace of function in W#(R¥ x R*) on the hyper-
plane xy 41 = 0. Through a partition of unity and a local covering this provides
the notion of trace of functions in W'-7(E) on the boundary 3 E, provided such a
boundary is sufficiently smooth. Sharp inequalities relating functions in W!-P(E)
with the integrability and regularity of their traces on 9 E are established in terms
of fractional Sobolev spaces. Such inequalities are first established for E being
a half-space and 3 E a hyperplane, and then extended to general domains E with
sufficiently smooth boundary dE. In the “Problems and Complements,” we char-
acterize functions f defined and integrable on d E as traces on 9 E of functions in
some Sobolev spaces W!.P(E). The relation between p and the order of integra-
bility of f on 3 E is shown to be sharp. For special geometries, such as a ball, the
inequality relating the integral of the traces and the Sobolev norm can be made
explicit. This is indicated in the *“Problems and Complements.”

The last part of the chapter contains a newly established multiplicative Sobolev
embedding for functions in W!-P(E) that do not necessarily vanish on 3 E. The
open set E is required to be convex. Its value is in its applicability to the asymptotic
behavior of solutions to Neumann problems related to parabolic partial differential
equations.
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