Takeshi Akasaka · Atsuhiro Osuka Shunichi Fukuzumi · Hideki Kandori Yoshio Aso *Editors*

Chemical Science of T-Electron Systems

Takeshi Akasaka • Atsuhiro Osuka Shunichi Fukuzumi • Hideki Kandori Yoshio Aso Editors

Chemical Science of π -Electron Systems

Editors Takeshi Akasaka Foundation for Advancement of International Science Tsukuba, Japan

Shunichi Fukuzumi Department of Chemistry and Nano Science Ewha Womans University Seoul, Korea

Faculty of Science and Engineering ALCA and SENTAN Japan Science and Technology Agency (JST) Meijo University Nagoya, Japan

Atsuhiro Osuka **Kyoto University** Kyoto, Japan

Hideki Kandori Nagoya Institute of Technology Nagoya, Japan

Yoshio Aso Osaka University Suita, Japan

ISBN 978-4-431-55356-4 DOI 10.1007/978-4-431-55357-1 ISBN 978-4-431-55357-1 (eBook)

Library of Congress Control Number: 2015954085

Springer Tokyo Heidelberg New York Dordrecht London

© Springer Japan 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Japan KK is part of Springer Science+Business Media (www.springer.com)

Chemical Science of π -Electron Systems

Preface

The versatility and wide potential of π -electron-based molecules, as typified by fullerenes and porphyrins, have continued to provide unique and sometimes unexpected properties and functions being continuously discovered and utilized in functional devices. In order to facilitate the investigation on highly elaborated π spaces with more sophisticated and complex orders and functionality, a research project entitled "Emergence of Highly Elaborated π -Space and Its Function" has been launched as a Grant-in-Aid for Scientific Research on Innovative Areas (2008– 2012) by The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). In this joint project, highly elaborated π -spaces are defined as highly complex orders/systems that stem from the π -electron-based interactions. Cutting-edge research has been performed based on clearly defined strategic objectives as well as an emergent approach that comes from innovation of unpredicted discovery. The research project consists of four groups (A01-04). The research group A01 led by Prof. Takeshi Akasaka has constructed novel π -electron systems of nonplanarity including metal-endofullerenes, whereas the research group A02 led by Prof. Atsuhiro Osuka has developed highly elaborated π -space functionality through the assembly of π -electron-based molecules. Based on new types of π electron-based molecules and assemblies, the revolutionary functions have been explored by clarifying the electronic, optical, and magnetic interactions of the highly elaborated π -spaces in research group A03 led by Prof. Shunichi Fukuzumi. Research group A04 led by Prof. Hideki Kandori has studied the interactions between biological molecules with highly elaborated π -space to discover new phenomena and create new concepts in biology.

This book is composed of eight parts. Part I: Extension of Planar π -Electron Systems, Part II: Curved π -Electron Systems, Part III: Porphyrinoids, Part IV: Open-Shell π -Electron Systems, Part V: Heteroatom-Conjugated π -Electron Systems, Part VI: Supramolecular Chemistry of π -Electron systems, Part VII: Innovative Function of π -Electron Systems, and Part VIII: π -Electron Systems in Biosystems and Biomimetics. It summarizes cutting-edge research in the MEXT project of

vi

"Emergence of Highly Elaborated π -Space and Its Function", covering the research area of A01–A04 and also interdisciplinary fields created by intensive collaborations between the different research groups to provide the current status and future perspective of highly elaborated π -spaces with high orders and functionality.

Suita, Japan

Shunichi Fukuzumi

Contributors

Manabu Abe Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

Institute for Molecular Science, Okazaki, Aichi, Japan

CREST, JST, Chiyoda-ku, Tokyo, Japan

Takeshi Akasaka Department of Chemistry, Tokyo Gakugei University, Tokyo, Japan

Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan

School of Materials Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China

Foundation for Advancement of International Science, Ibaraki, Japan

Midori Akiyama Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Koji Ando Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan

Lai Feng Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Jiangsu Key Laboratory of Thin Films and School of Energy, Soochow University, Suzhou, P. R. China

Hisashi Fujihara Department of Applied Chemistry, Kinki University, Higashi-Osaka, Japan

Kazuhiro J. Fujimoto Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe, Japan

Shunichi Fukuzumi Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea

Faculty of Science and Engineering, ALCA and SENTAN, Japan Science and Technology Agency (JST), Meijo University, Nagoya, Japan

Mina Furukawa Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Hiroyuki Furuta Department of Chemistry and Biochemistry, Graduate School of Engineering and Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka, Japan

Taku Hasobe Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan

Sayaka Hatano Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

Shuhei Higashibayashi Institute for Molecular Science, Myodaiji Okazaki, Japan

Koichi Higashimine Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Shu Hotta Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan

Hiroshi Ikeda Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

Masatoshi Ishida Department of Chemistry and Biochemistry, Graduate School of Engineering and Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka, Japan

Shinobu Itoh Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan

Takeaki Iwamoto Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan

Takuya Kamimura Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan

Hideki Kandori Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan

Masayuki Kanehara Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan

Kiyohiko Kawai The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka, Japan

Contributors xiii

Naoki Kawamoto Integrated Center for Sciences, Ehime University, Matsuyama, Japan

Takeshi Kawase Graduate School of Engineering, University of Hyogo, Himeji, Japan

Jun-ichi Kikuchi Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Chitoshi Kitamura Department of Materials Science, School of Engineering, The University of Shiga Prefecture, Hikone, Shiga, Japan

Hirotaka Kitoh-Nishioka Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan

Junji Kobayashi College of Liberal Arts, International Christian University, Mitaka, Japan

Nagao Kobayashi Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan

Akihito Konishi Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan

Takashi Kubo Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan

Yutaka Maeda Department of Chemistry, Tokyo Gakugei University, Tokyo, Japan

Tetsuro Majima The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka, Japan

Yutaka Majima Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan

Yoshihiro Matano Department of Chemistry, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan

Yasunori Matsui Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

Tsukasa Matsuo Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Japan

Yutaka Matsuo Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan

Yoshiyuki Mizuhata Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

xiv Contributors

Hitoshi Mizuno Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Shimane, Japan

Shigeki Mori Integrated Center for Sciences, Ehime University, Matsuyama, Japan

Yuma Morimoto Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan

Hideyuki Murata School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Yasujiro Murata Institute for Chemical Research, Kyoto University, Uji, Japan

Shigeru Nagase Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan

Tsukasa Nakahodo Department of Applied Chemistry, Kinki University, Higashi-Osaka, Japan

Koji Nakano Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Japan

Tohru Nishinaga Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Hirofumi Nobukuni Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan

Takumi Noguchi Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Japan

Kyoko Nozaki Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Keisuke Ohdaira Green Devices Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Eisuke Ohta Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

Tetsuo Okujima Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Atsuhiro Osuka Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan

Akinori Saeki Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan

Contributors xv

Ken-ichi Sakaguchi Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan

Hayato Sakai Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan

Hidehiro Sakurai Department of Applied Chemistry, Graduated School of Engineering, Osaka University, Suita, Osaka, Japan

Fumio Sasaki Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Satoru Sato Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Shu Seki Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan

Tomokazu Shibata Department of Chemistry, University of Tsukuba, Tsukuba, Japan

Soji Shimizu Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan

Hiroshi Shinokubo Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan

Shuichi Suzuki Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Japan

Kazunari Tagawa Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Keishiro Tahara Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Yuta Takano Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan

Jun Takeya Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan

Takayuki Tanaka Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan

Fumito Tani Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan

xvi Contributors

Kentaro Tashiro International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, Japan

Hayato Tsuji Department of Chemistry, The University of Tokyo, Tokyo, Japan JST-PRESTO, Kawaguchi, Saitama, Japan

Shogo Tsuzaki School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Hidemitsu Uno Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Varun Vohra School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

Department of Engineering Science, University of Electro-Communications, Tokyo, Japan

Hajime Watanabe Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Michio Yamada Department of Chemistry, Tokyo Gakugei University, Tokyo, Japan

Shigehiro Yamaguchi Institute of Transformative Bio-molecules and Graduate School of Science, Nagoya University, Nagoya, Japan

Yasuhiko Yamamoto Department of Chemistry, University of Tsukuba, Tsukuba, Japan

Hisao Yanagi Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Kazuhiro Yanagi Department of Physics, Tokyo Metropolitan University, Hachioji, Japan

Kazuma Yasuhara Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Contents

Par	t I Extension of Planar π-Electron Systems	
1	Dibenzopentalenes and Related Compounds	3
2	Synthesis of a Porphyrin-Fused π-Electron System Hidemitsu Uno, Kazunari Tagawa, Hajime Watanabe, Naoki Kawamoto, Mina Furukawa, Tetsuo Okujima, and Shigeki Mori	17
3	Higher-Order π -Electron Systems Based on Helicene Molecules Midori Akiyama, Koji Nakano, and Kyoko Nozaki	37
4	Planar Cyclooctatetraenes and Related Ring Systems: Antiaromaticity and Applications Tohru Nishinaga	47
5	Synthesis, Crystal Structures, and Solid-State Optical Properties of Substituted Tetracenes Chitoshi Kitamura	69
Par	t II Curved π-Electron Systems	
6	Chiral Sumanene, Triazasumanene, and Related Buckybowls Shuhei Higashibayashi and Hidehiro Sakurai	91
7	Heteroatom-Containing Sumanene Junji Kobayashi	107
8	Open-Cage Fullerene Derivatives: Synthesis, Reactions, and Encapsulation of a Small Molecule Yasujiro Murata	117

y	to Material Performance Michio Yamada, Satoru Sato, Yuta Takano, Lai Feng, Shigeru Nagase, and Takeshi Akasaka	133
10	Tuning Physical Properties and Structures of π -Electron System Formed by Single-Wall Carbon Nanotubes with Selected Chiralities	155
11	Recent Progress on the Chemical Reactions of Single-Walled Carbon Nanotubes Yutaka Maeda and Takeshi Akasaka	177
Par	t III Porphyrinoids	
12	Novel π-Conjugated Systems Based on N-Confused Porphyrinoids Masatoshi Ishida and Hiroyuki Furuta	201
13	Heteroatom-Modified Porphyrinoids Yoshihiro Matano	223
14	Synthesis of Novel Porphyrinoids from Dipyrrins	243
15	Möbius Aromatic and Antiaromatic Expanded Porphyrins	257
16	Recent Advances in the Chemistry of Phthalocyanines as Functional Chromophores	273
Par	t IV Open-Shell π-Electron Systems	
17	Localized Singlet 1,3-Diradicals Manabu Abe and Sayaka Hatano	295
18	Unique Orbital Interactions in the Ground and Electronically Excited States of Biradicals Brought about by the Existence of "Twisted π-Space"	315
19	Recent Progress in Stable High-Spin Molecules Based on Nitroxide Radicals Shuichi Suzuki	323
20	Organic Chemistry of Graphene Framework Akihito Konishi and Takashi Kubo	337

Part	t V Heteroatom-Conjugated π-Electron Systems			
21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	363		
22	Doubly Bonded Silicon Compounds Showing Intramolecular Charge-Transfer Transitions Takeaki Iwamoto	379		
23	$\pi\text{-}Conjugated \ Disilenes \ and \ Tetrasilacyclobutadiene$ Tsukasa Matsuo	393		
24	Tin-Containing π-Electron Systems Yoshiyuki Mizuhata	403		
Par	t VI Supramolecular Chemistry of π-Electron Systems			
25	Supramolecular Structures and Photoelectronic Properties of π -Complexes Composed of Self-Assembling Cyclic Porphyrin Dimers and Fullerenes	423		
26	Sequence Control of π -Electron Systems	443		
27	Integrated π-Electron Systems on Artificial Cell Membranes Jun-ichi Kikuchi, Kazuma Yasuhara, and Keishiro Tahara	457		
28	Supramolecular Porphyrin Nanorods for Light Energy Conversion Taku Hasobe and Hayato Sakai	475		
29	Metal Nanoparticle/Porphyrinoid Hybrids	493		
Part VII Innovative Function of π-Electron Systems				
30	Control of Chiral π -Space in Highly Organized π -Conjugated Polymer Nanotube Composites and Their Functions	511		
31	Photoinduced Electron-Transfer Functions of π -Electron Donor–Acceptor Supramolecular Complexes	529		
32	Fused π-Electron Systems Containing Group 15 Elements and Their Application to Organic Electronics	545		

X

33	Fullerene Derivatives for Organic Solar Cells	559
34	Efficient Organic Devices Based on π-Electron Systems: Comparative Study of Fullerene Derivatives Blended with a High Efficiency Naphthobisthiadiazole-Based Polymer for Organic Photovoltaic Applications. Varun Vohra, Koichi Higashimine, Keisuke Ohdaira, Shogo Tsuzaki, and Hideyuki Murata	575
35	Solution-Processed Organic Thin-Film Transistors	589
36	Unveiling Charge Carrier Transport in π -Conjugated Molecular Wire on Micro- and Macroscopic Scales	605
37	STM Characterization of π -Electron Systems Yutaka Majima	621
38	Light Amplification in Low-Dimensional Crystals of Thiophene/Phenylene Co-oligomer Derivatives	635
Par	t VIII π -Electron Systems in Biosystems and Biomimetics	
39	Electron Transfer Pathway Analysis in Bacterial Photosynthetic Reaction Center Hirotaka Kitoh-Nishioka and Koji Ando	657
40	Spectroscopic Analysis of the Redox Reactions of π -Conjugated Cofactors in Photosynthetic Reaction Center Takumi Noguchi	675
41	Protein-Controlled Isomerization in Rhodopsins	695
42	β-Diketiminates as Redox Non-innocent Supporting Ligands in Coordination Chemistry Shinobu Itoh and Yuma Morimoto	715
43	Novel Functions of $\pi\text{-Electron}$ Systems in a Heme-DNA Complex \dots Yasuhiko Yamamoto and Tomokazu Shibata	731
44	Increasing the Hole Transfer Rate Through DNA by Chemical Modification Kiyohiko Kawai and Tetsuro Majima	751
45	Theoretical Calculations of Excitation Energy Transfer	761

#