Michael McMillan

ATERF HhRtt

RFWENBEFESZ L BN ART] (REHAK)

Data Structures and Algorithms Using C#

BIRGHSEE

(CHEZIR)

Michael

BEXFE MR
t =

Data Structures and Algorithms Using C# (ISBN: 9780521670159) by Michael McMillan first published by
Cambridge University Press 2007

All rights reserved.

This reprint edition for the People’s Republic of China is published by arrangement with the Press Syndicate of
the University of Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & Tsinghua University Press 2009

This book is in copyright. No reproduction of any part may take place without the written permission of
Cambridge University Press and Tsinghua University Press.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

URFHEARLMEHRN (FEEHEESE. BIIHHITHEN
hEEEHX) HERIT.

ERHEEE FERFHEHBHRE, TREEFEHE.

ERARERE, BN, BINEEREIE: 010-62782989 13701121933

B ERELR B (CIP) 83

AR £ ¥y 58 . OB SR = Data Structures and Algorithms Using C#: %3/ (3£) F X% (McMillan,
M) E ——gHE —Ibm. FRREREMA, 20095

CREFEHNEFRSNZEBEM RS GEHMRD)
ISBN 978-7-302-19798-0

[. # 1. %F-- I ORBEH TSR -8 — 82X QEEMT—AFER—#H —HX
@CES-—FBFRIT -SSR —#—%Ex V. TP311.12 TP301.6 TP312

h B AR A B B CIP BB %7 (2009) 55 045368 5

| B

HIEAT: B ERYE o hb: dEREERKFEEHAEAE
http:/ /www.tup.com.ch B #%: 100084
i+ B Hl: 010-62770175 2 T: 010-62786544

{5 iFEERE: 010-62776969, c-service@tup. tsinghua. edu. cn

B B & & 010-62772015, zhiliang@tup. tsinghua. edu. cn

b SR ENFH R A F]

L EF S

185X23¢0 ENgk: 22.25

2000 %E 5 A% 1 AR EN MR 2009 46 S AE 1 RETR
1~3000

35.00 T

ABWFELFEAE. W, 8T, @AW, BAZSOEREAE, F5EECFRERTHRTER
V. BRBEIE: 010-62770177 % 3103 FEfgmE: 028859-01

3 W

HODOE S
TEN M NN

AR 3 B

A 21 e, tREEKZLE. REURSGEEINFESEENEI . ReEFok
R AAWFES . EHAERBRERMOAL, EREEZSFTERENS. 24T, #
HEFEERAA L, PRZBGEEN. BTRERSHENEMETRE, AT
IERE M EBRE, BOE MIEA R RERE B E AR R ER

BHERFHRMN 1996 FH, SEAELHRARGE, BEHHKT “KEHEN
FEAE (BERO” F—RYI5IHEF, ZEENERERQM . BA 21 e, &
MNAFEAREGSHEEERIRSOWE, EOEREMLE, # P KEERE &
BEBFRRT, —mBAEIEE X EXBOEER TRESKAR L RAE T EVHEEN
EAh L BB ERE R BN, ARAE “RETENBHFERSIELZEM RT GEEBO”, U
WRIEE . WIIHRNEE RS R EM IR NE LR BR R EAEENEER.
HRPRABAEF RSN BENBEEORZ BN, DRBTAE “REFEIHETEIES
MRS GEERD” BBELE, BEEHRINERTEE.

BRI R

DATA STRUCTURES AND
ALGORITHMS UsING C#

C# programmers: no more translating data structures from C++ or Java to
use in your programs! Mike McMillan provides a tutorial on how to use data
structures and algorithms plus the first comprehensive reference for C# imple-
mentation of data structures and algorithms found in the .NET Framework
library, as well as those developed by the programmer.

The approach is very practical, using timing tests rather than Big O nota-
tion to analyze the efficiency of an approach. Coverage includes array and
Arraylists, linked lists, hash tables, dictionaries, trees, graphs, and sorting
and searching algorithms, as well as more advanced algorithms such as prob-
abilistic algorithms and dynamic programming. This is the perfect resource
for C# professionals and students alike.

Michael McMillan is Instructor of Computer Information Systems at Pulaski
Technical College, as well as an adjunct instructor at the University of
Arkansas at Little Rock and the University of Central Arkansas. Mike’s previ-
ous books include Object-Oriented Programming with Visual Basic.NET, Data
Structures and Algorithms Using Visual Basic.NET, and Perl from the Ground Up.
He is a co-author of Programming and Problem-Solving with Visual Basic.NET.
Mike has written more than twenty-five trade journal articles on programming
and has more than twenty years of experience programming for industry and
education.

Preface

The study of data structures and algorithms is critical to the development
of the professional programmer. There are many, many books written on
data structures and algorithms, but these books are usually written as college
textbooks and are written using the programming languages typically taught
in college—Java or C++. C# is becoming a very popular language and this
book provides the C# programmer with the opportunity to study fundamental
data structures and algorithms.

C# exists in a very rich development environment called the .NET Frame-
work. Included in the .NET Framework library is a set of data structure classes
(also called collection classes), which range from the Array, ArrayList, and
Collection classes to the Stack and Queue classes and to the HashTable and
the SortedList classes. The data structures and algorithms student can now see
how to use a data structure before learning how to implement it. Previously,
an instructor had to discuss the concept of, say, a stack, abstractly until the
complete data structure was constructed. Instructors can now show students
how to use a stack to perform some computation, such as number base con-
versions, demonstrating the utility of the data structure immediately. With
this background, the student can then go back and learn the fundamentals of
the data structure (or algorithm) and even build their own implementation.

This book is written primarily as a practical overview of the data struc-
tures and algorithms all serious computer programmers need to know and
understand. Given this, there is no formal analysis of the data structures and
algorithms covered in the book. Hence, there is not a single mathematical
formula and not one mention of Big Oh analysis (if you don’t know what this
means, look at any of the books mentioned in the bibliography). Instead, the
various data structures and algorithms are presented as problem-solving tools.

vil

viil PREFACE

Simple timing tests are used to compare the performance of the data structures
and algorithms discussed in the book.

PREREQUISITES

The only prerequisite for this book is that the reader have some familiarity
with the C# language in general, and object-oriented programming in C# in
particular.

CHAPTER-BY-CHAPTER ORGANIZATION

Chapter 1 introduces the reader to the concept of the data structure as a
collection of data. The concepts of linear and nonlinear collections are intro-
duced. The Collection class is demonstrated. This chapter also introduces the
concept of generic programming, which allows the programmer to write one
class, or one method, and have it work for a multitude of data types. Generic
programming is an important new addition to C# (available in C# 2.0 and
beyond), so much so that there is a special library of generic data structures
found in the System.Collections.Generic namespace. When a data structure
has a generic implementation found in this library, its use is discussed. The
chapter ends with an introduction to methods of measuring the performance
of the data structures and algorithms discussed in the book.

Chapter 2 provides a review of how arrays are constructed, along with
demonstrating the features of the Array class. The Array class encapsulates
many of the functions associated with arrays (UBound, LBound, and so on)
into a single package. ArrayLists are special types of arrays that provide
dynamic resizing capabilities.

Chapter 3 is an introduction to the basic sorting algorithms, such as the
bubble sort and the insertion sort, and Chapter 4 examines the most funda-
mental algorithms for searching memory, the sequential and binary searches.

Two classic data structures are examined in Chapter 5: the stack and the
queue. The emphasis in this chapter is on the practical use of these data
structures in solving everyday problems in data processing. Chapter 6 covers
the BitArray class, which can be used to efficiently represent a large number
of integer values, such as test scores.

Strings are not usually covered in a data structures book, but Chapter 7
covers strings, the String class, and the StringBuilder class. Because so much

PREFACE IX

data processing in C# is performed on strings, the reader should be exposed
to the special techniques found in the two classes. Chapter 8 examines the
use of regular expressions for text processing and pattern matching. Regular
expressions often provide more power and efficiency than can be had with
more traditional string functions and methods.

Chapter 9 introduces the reader to the use of dictionaries as data structures.
Dictionaries, and the different data structures based on them, store data as
key/value pairs. This chapter shows the reader how to create his or her own
classes based on the DictionaryBase class, which is an abstract class. Chap-
ter 10 covers hash tables and the HashTable class, which is a special type of
dictionary that uses a hashing algorithm for storing data internally.

Another classic data structure, the linked list, is covered in Chapter 11.
Linked lists are not as important a data structure in C# as they are in a
pointer-based language such as C++, but they still have a role in C# program-
ming. Chapter 12 introduces the reader to yet another classic data structure—
the binary tree. A specialized type of binary tree, the binary search tree, is
the primary topic of the chapter. Other types of binary trees are covered in
Chapter 15.

Chapter 13 shows the reader how to store data in sets, which can be useful in
situations in which only unique data values can be stored in the data structure.
Chapter 14 covers more advanced sorting algorithms, including the popular
and efficient QuickSort, which is the basis for most of the sorting procedures
implemented in the .NET Framework library. Chapter 15 looks at three data
structures that prove useful for searching when a binary search tree is not
called for: the AVL tree, the red-black tree, and the skip list.

Chapter 16 discusses graphs and graph algorithms. Graphs are useful for
representing many different types of data, especially networks. Finally, Chap-
ter 17 introduces the reader to what algorithm design techniques really are:
dynamic algorithms and greedy algorithms.

ACKNOWLEDGEMENTS

There are several different groups of people who must be thanked for helping
me finish this book. First, thanks to a certain group of students who first
sat through my lectures on developing data structures and algorithms. These
students include (not in any particular order): Matt Hoffman, Ken Chen, Ken
Cates, Jeff Richmond, and Gordon Caffey. Also, one of my fellow instructors
at Pulaski Technical College, Clayton Ruff, sat through many of the lectures

X PREFACE

and provided excellent comments and criticism. I also have to thank my
department dean, David Durr, and my department chair, Bernica Tackett, for
supporting my writing endeavors. 1 also need to thank my family for putting
up with me while I was preoccupied with research and writing. Finally, many
thanks to my editors at Cambridge, Lauren Cowles and Heather Bergman, for
putting up with my many questions, topic changes, and habitual lateness.

Contents

A

Preface ’ page vil
Chapter 1

An Introduction to Collections, Generics, and the

Timing Class 1
Chapter 2

Arrays and Arraylists 26
Chapter 3

Basic Sorting Algorithms 42
Chapter 4

Basic Searching Algorithms 55
Chapter 5

Stacks and Queues 68
Chapter 6

The BitArray Class 94
Chapter 7

Strings, the String Class, and the StringBuilder Class 119
Chapter 8

Pattern Matching and Text Processing 147

\J

vi

Chapter 9
Buliding Dictlonaries: The DictionaryBase Class and the
SortedList Class

Chapter 10
Hashing and the Hashtable Class

Chapter 11
Linked Lists

Chapter 12
Binary Trees and Binary Search Trees

Chapter 13
Sets

Chapter 14
Advanced Sorting Algorithms

Chapter 15
Advanced Data Structures and Algorithms for Searching

Chapter 16
Graphs and Graph Algorithms

Chapter 17
Advanced Algorithms

References

CONTENTS

165

176

194

218

237

249

263

283

314

339

An Introduction to
Collections, Generics,
and the Timing Class

This book discusses the development and implementation of data structures
and algorithms using C#. The data structures we use in this book are found
in the .NET Framework class library System.Collections. In this chapter, we
develop the concept of a collection by first discussing the implementation of
our own Collection class (using the array as the basis of our implementation)
and then by covering the Collection classes in the NET Framework.

An important addition to C# 2.0 is generics. Generics allow the C# pro-
grammer to write one version of a function, either independently or within a
class, without having to overload the function many times to allow for differ-
ent data types. C# 2.0 provides a special library, System.Collections.Generic,
that implements generics for several of the System.Collections data structures.
This chapter will introduce the reader to generic programming.

Finally, this chapter introduces a custom-built class, the Timing class, which
we will use in several chapters to measure the performance of a data structure
and/or algorithm. This class will take the place of Big O analysis, not because
Big O analysis isn’t important, but because this book takes a more practical
approach to the study of data structures and algorithms.

1

2 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

CoLLECTIONS DEFINED

A collection is a structured data type that stores data and provides operations
for adding data to the collection, removing data from the collection, updating
data in the collection, as well as operations for setting and returning the values
of different attributes of the collection.

Collections can be broken down into two types: linear and nonlinear. A
linear collection is a list of elements where one element follows the previous
element. Elements in a linear collection are normally ordered by position
(first, second, third, etc.). In the real world, a grocery list is a good example
of a linear collection; in the computer world (which is also real), an array is
designed as a linear collection.

Nonlinear collections hold elements that do not have positional order
within the collection. An organizational chart is an example of a nonlinear
collection, as is a rack of billiard balls. In the computer world, trees, heaps,
graphs, and sets are nonlinear collections.

Collections, be they linear or nonlinear, have a defined set of properties that
describe them and operations that can be performed on them. An example
of a collection property is the collections Count, which holds the number of
items in the collection. Collection operations, called methods, include Add
(for adding a new element to a collection), Insert (for adding a new element
to a collection at a specified index), Remove (for removing a specified element
from a collection), Clear (for removing all the elements from a collection),
Contains (for determining if a specified element is a member of a collec-
tion), and IndexOf (for determining the index of a specified element in a
collection).

CoLLECTIONS DESCRIBED

Within the two major categories of collections are several subcategories.
Linear collections can be either direct access collections or sequential access
collections, whereas nonlinear collections can be either hierarchical or
grouped. This section describes each of these collection types.

Direct Access Collections

The most common example of a direct access collection is the array. We define
an array as a collection of elements with the same data type that are directly
accessed via an integer index, as illustrated in Figure 1.1.

Collections Described 3

ltemo | Item1 | Item2 | Item 3 e Itemj [ltem n—1

Ficure 1.1. Array.

Arrays can be static so that the number of elements specified when the array
is declared is fixed for the length of the program, or they can be dynamic, where
the number of elements can be increased via the ReDim or ReDim Preserve
statements.

In C#, arrays are not only a built-in data type, they are also a class. Later
in this chapter, when we examine the use of arrays in more detail, we will
discuss how arrays are used as class objects.

We can use an array to store a linear collection. Adding new elements to an
array is easy since we simply place the new element in the first free position
at the rear of the array. Inserting an element into an array is not as easy (or
efficient), since we will have to move elements of the array down in order
to make room for the inserted element. Deleting an element from the end of
an array is also efficient, since we can simply remove the value from the last
element. Deleting an element in any other position is less efficient because,
just as with inserting, we will probably have to adjust many array elements
up one position to keep the elements in the array contiguous. We will discuss
these issues later in the chapter. The .NET Framework provides a specialized
array class, ArrayList, for making linear collection programming easier. We
will examine this class in Chapter 3.

Another type of direct access collection is the string. A string is a collection
of characters that can be accessed based on their index, in the same manner we
access the elements of an array. Strings are also implemented as class objects
in C#. The class includes a large set of methods for performing standard
operations on strings, such as concatenation, returning substrings, inserting
characters, removing characters, and so forth. We examine the String class in
Chapter 8.

C# strings are immutable, meaning once a string is initialized it cannot be
changed. When you modify a string, a copy of the string is created instead of
changing the original string. This behavior can lead to performance degrada-
tion in some cases, so the NET Framework provides a StringBuilder class that
enables you to work with mutable strings. We’ll examine the StringBuilder in
Chapter 8 as well.

The final direct access collection type is the struct (also called structures
and records in other languages). A struct is a composite data type that holds
data that may consist of many different data types. For example, an employee

4 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

record consists of employee’ name (a string), salary (an integer), identification
number (a string, or an integer), as well as other attributes. Since storing each
of these data values in separate variables could become confusing very easily,
the language provides the struct for storing data of this type.

A powerful addition to the C# struct is the ability to define methods for
performing operations stored on the data in a struct. This makes a struct
somewhat like a class, though you can't inherit or derive a new type from
a structure. The following code demonstrates a simple use of a structure
in C#:

using System;
public struct Name {
private string fname, mname, lname;

public Name(string first, string middle, string last) {
fname = first;

mname = middle;
lname = last;
}
public string firstName {
get {
return fname;
}
set {
fname = firstName;
}
}
public string middleName {
get {
return mname;
}
set {
mname = middleName;
}
}

public string lastName {
get {

Collections Described 5

return lname;

}

set {
lname = lastName;
}
}

public override string ToString() ({
return (String.Format("{0} {1} {2}", fname, mname,
lname)) ;

}

public string Initials() ({
return (String.Format ("{0}{1}{2}" fname.Substring(0,1)
mname. Substring(0,1), lname.Substring(0,1)));

}
}

public class NameTest {
static void Main{() {
Name myName = new Name("Michael", "Mason", "McMillan");
string fullName, inits; '
fullName = myName.ToStringl();
inits = myName.Initials(};
Console.WriteLine("My name is {0}.", fullName);
Console.WriteLine("My initials are {0}.", inits);

Although many of the elements in the .NET environment are implemented as
classes (such as arrays and strings), several primary elements of the language
are implemented as structures, such as the numeric data types. The Integer
data type, for example, is implemented as the Int32 structure. One of the
methods you can use with Int32 is the Parse method for converting the string
representation of a number into an integer. Here’s an example:

using System;

public class IntStruct ({
static void Main() {

6 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

int num;

string snum;

Console.Write("Enter a number: ");
snum = Console.ReadLine():

num = Int32.Parse(snum) ;
Console.WriteLine (num) ;

Sequential Access Collections

A sequential access collection is a list that stores its elements in sequential
order. We call this type of collection a linear list. Linear lists are not limited
by size when they are created, meaning they are able to expand and contract
dynamically. Items in a linear list are not accessed directly; they are referenced
by their position, as shown in Figure 1.2. The first element of a linear list is
at the front of the list and the last element is at the rear of the list.

Because there is no direct access to the elements of a linear list, to access an
element you have to traverse through the list until you arrive at the position
of the element you are looking for. Linear list implementations usuaily allow
two methods for traversing a list—in one direction from front to rear, and
from both front to rear and rear to front.

A simple example of a linear list is a grocery list. The list is created by
writing down one item after another until the list is complete. The items are
removed from the list while shopping as each item is found.

Linear lists can be either ordered or unordered. An ordered list has values
in order in respect to each other, as in:

Beata Bernica David Frank Jennifer Mike Raymond Terrill

An unordered list consists of elements in any order. The order of a list makes
a big difference when performing searches on the data on the list, as you'll see
in Chapter 2 when we explore the binary search algorithm versus a simple
linear search.

|1st |2nd |3rd |4[h <o+ [mh

Front Rear

Ficure 1.2. Linear List.

