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PREFACE

THis is a direct continuation of Part 1, which we wrote jointly with V. B. Berestetskii,
and the numbering of the chapters and sections in the two parts forms one series.

The first three chapters deal with the theory of radiative corrections, and thus complete
the exposition of quantum electrodynamics. Here again we have tried not only to emphasise
the physical principles of the methods used, but also to display important points of tech-
nique, and the actual calculations are therefore given in some detail.

It was a part of L. D. Landau’s original concept of the Course of Theoretical Physics that
it should describe only those results which can be reasonably regarded as established and
embodied in a definite theoretical system. The treatment should not approach too closely
the “frontiers” of theoretical physics. It is, of course, especially difficult to apply this crite-
rion at the present time to a subject such as the theory of weak and strong interactions.
Moreover, an account of various isolated topics would be of little use to those who are
particularly concerned with this subject, and would be of no interest to those who are not.
For these reasons, we have decided to limit ourselves in the present book to just the dyna-
mical symmetry of strong interactions and the “phenomenological” theory of weak inter-
actions. We hope that, despite this limitation, the book will be useful to a fairly large number
of readers.

As in the other volumes of the Course, the references to the literature that are given here
make no claim to completeness or to the indication of priority. Their sole purpose is as
a guide to material lying somewhat outside the scope of our account, but closely related
to it. Even so, the nature of the subject is such that the choice of references is difficult and
uncertain.

References to earlier volumes in the course are made as shown on page xv of Part 1.

We should like to thank B. L. Ioffe and I. S: Shapiro, who read through the book and
made a number of useful comments. We are grateful also to Ya. I. Azimov and A. A. Var-
folomeev for advice, and we have made profitable use of the book by L. B. Okun’! in
dealing with the theory of weak interactions. We are deeply indebted to Dr. Sykes and
Dr. Bell for their accurate translation and also for their comments that have enabled us to
eliminate some imprecisions of presentation.

E. M. LiFsHITZ
L. P. PITtAevskii

T Weak Interaction of Elementary Particles, Pergamon Press, Oxford, 1965.
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CHAPTER XI

EXACT PROPAGATORS AND VERTEX PARTS

§99. Field operators in the Heisenberg representation

HITHERTO, in considering various specific processes in electrodynamics, we have used only
the first non-vanishing approximation of perturbation theory. We shall now go on to discuss
the effects which occur in higher approximations. These are called radiative corrections.

A better understanding of the structure of the higher approximations can be obtained by
first examining some general properties of exact scattering amplitudes (i.e. those which have
not been expanded in powers of ¢2). We have seen in §73 that the successive terms of the
series in perturbation theory can be expressed in terms of the field operators in the interac-
tion representation, whose time dependence is determined by the Hamiltonian H, of a sys-
tem of free particles. The exact scattering amplitudes, however, are more conveniently
expressed in terms of the field operators in the Heisenberg representation, where the time
dependence is determined by the exact Hamiltonian H = Hy+ V of a system of interacting
particles.

The general rule for constructing the Heisenberg operators gives

B(x) = (1, r) = Mg (r)e (99.1)

and similarly for Y(x) and A(x), $(r), etc., being time-independent (Schrodinger) operators.’
It may be noted immediately that the Heisenberg operators for a given time obey the same
commutation rules as the operators in the Schrodinger representation or the interaction
representation: for example,

{bie, N ot} = YD)} e = % 8(r—r); (99.2)
cf. (76.6). Similarly, the operators (7, r) and A(?, ') commute:
{bit, r) Ar, )} =0,
but this does not hold good for operators pertaining to different times.
In this chapter, operators with a time argument belong to the Heisenberg representation; those in the

interaction representation will be given the suffix int.

377



378 Exact propagators and vertex parts §99

The “equation of motion” satisfied by the Heisenberg y-operator can be derived from the
general formula QM (13.7):

—i——— = Hy(x)—(x) H. (99.3)

The Schrodinger and Heisenberg representations are the same as regards the Hamiltonian,
which is expressed in the same way in terms of the field operators. Here, to calculate the
right-hand side of (99.3), we may omit from the Hamiltonian the part which depends only
on the operator A(x) (the Hamiltonian of the free electromagnetic field), since this part
commutes with $(x). According to (21.13) and (43.3),

H= J'q)‘(t, r) (a-p+m)b(z, #)dix+e J.Ll:(f, ¥) A, r) $(t, ¥) dix
= f G(t, r) {yp+ m-+ eA(l, r)} $(z, r) dx. (99.4)

When the commutator {H(z, r)} _ is calculated from (99.2) and the delta function is elimi-
nated by integration over d®x, we get

(f)—eA—m) Y(t, r) = 0. (99.5)

As we should expect, the operator (7, r) satisfies an equation which is formally the same
as Dirac’s equation.

The equation for the electromagnetic field operator A(z, r) is obvious from the correlation
with the classical case. When that case applies, i.e. when the occupation numbers are large
(cf.§5), the operator equation must become the classical Maxwell’s equation for the poten-
tials, Fields (30.2), after averaging over the state of the field. It is therefore clear that the
equation for the operator is simply the same as Maxwell’s equation, so that we have (for an
arbitrary gauge)

0" 0,A%(x)— 0" 0,A’(x) = —4mej’(x), (99.6)

where j(x) = $(x) 9" $(x) is the current operator, satisfying identically the equation of
continuity’
8,i’(x) = 0. (99.7)

It is important to note that the equations (99.6) are linear in A* and j*, and the question
of the sequence of these operators does not arise.

Like the similar equations for wave functions, the operator equations (99.6) and (99.7)
are invariant under the gauge transformation

A(x) = Ax)—0,(x),
P(x) ~ P(x)e, (99.8)
b(x) ~ P(x)eer,

where y(x) is any real operator which commutes (at a particular time) with .#

t The operators Ajj,(x) corresponding to the free electromagnetic field satisfy the same equation with
zero on the right-hand side:
0" 0,ALL(x)— 8 0,Al(x) = 0. (99.6a)

#Dint

¥ This refers specifically to the Heisenberg y-operators. In the interaction representation, the gauge trans-
formation of the electromagnetic potentials does not affect the y-operators.
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Let us now ascertain the relationship between the operators in the Heisenberg represen-
tation and those in the interaction representation. To simplify the discussion, it is convenient
to make the formal assumption (which will not affect the final result) that the interaction
V(?) is adiabatically “switched on” from # = — oo to finite times. Then the Heisenberg and
interaction representations are the same for # — — o, and the wave functions of the system,

@ and D,,,, are the same:
Dt = — =) =D. (99.9)

But the wave function in the Heisenberg representation is independent of time (since the
whole of the time dependence is in the operators); in the interaction representation, the time
dependence of the wave function is given by (73.7):

Dini(t) ="S(t, — o0 ) Diny(— =), (99.10)
where'

S(ta, 1) = T exp { —i f V() dt’}. (99.11)

Comparison of (99.10) and (99.9) gives
Dini(?) = S(t, — =)D (99.12)

as the relationship between the wave functions in the two representations. The operator
transformation formula is similarly

Y(t,r) = STHL, — o) Yinlt, r) S(t, — ) (99.13)
= S(— co, t) \pint(ta l‘) S(t, - °°)’

and likewise for ‘I’ and A.

One further general remark may be added. It has already been mentioned more than once
that, in relativistic quantum theory, the physical significance of the field operators is very
limited because the zero-point fluctuations are infinite. This is even more true of operators
in the Heisenberg representation, which contain also divergences due to the interaction.
In this chapter, §§99-106 deal with the formal theory, which ignores the question of elimina-
ting these singularities and which treats all quantities as if they were finite. The results thus
obtained have mainly heuristic value: they lead to a fuller understanding of the significance
of the expansions given by perturbation theory, and they may also remain valid in some
form in a future theory which is free from the present difficulties.”*

T The following properties of S are obvious:

S(1, 1y) S(ty, 1) = S(1, 1),
(99.11a)
S(1, o) S(tg, 1) = 1.

I The mathematical formalism developed here can be used also in quantum statistical physics, where the
divergences typical of field theory do not occur.
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§100. The exact photon propagator

The concepts of exact propagators play a central role in the formalism of the exact theory
(i.e. without expansion in powers of €2)."
The exact photon propagator (denoted by the script letter ) is defined by

D w(x—x") = i(0| TA,(x) A(x")| O), (100.1)
where A (x) are Heisenberg operators, in contrast to the definition (77.1):
D, (x—x") = i(0 | TA(x) Aint(x")| 0), (100.2)

in which the operators in the interaction representation were used. The function (100.2)
may be called the free (or bare)-photon propagator to distinguish it from the exact propa-
gator (100.1).

Since the mean value in (100.1) cannot be exactly calculated, it is impossible to obtain an
exact analytical expression for 0, , although the definition does lead to some general proper-
ties of this function, as will be discussed in §108; here we shall consider the calculation of
@, by perturbation theory, using the diagram technique. For this purpose, we must
express ), in terms of the operators in the interaction representation.

First, let # > #'. Using the relationship between A(x) and A, (x) (cf. (99.13)), we can
write

Du(x—x") = 0| A (x) A(x")| 0)
= i{0|S(— o=, 1) AiM(x) S(#, — =) S(— o=, )X
X AP(X) S(t', — )| 0).

According to (99.11a) we can make the substitutions

S, — o) S(— e, ') = S(, '),
S(—o0, ) = §(— o, + ) §(=, ?).
Then
D (x—x') = K0 [ST[S(e, 1) Al(x) S(t, ) AP(X)S(¥', —==)]| 0), (100.3)
with
8 = S(405; ~e), (100.4)
Since, according to the definition (99.11), S(#2, #,) includes only operators for times between

¢, and #; arranged in chronological sequence, it is evident that all the operator factors in the
brackets in (100.3) are in order of decreasing time from left to right. If the time-ordering

* These concepts were introduced by F. J. Dyson (1949), who also developed essentially the whole of the
treatment given in this chapter.
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symbol T is placed before the bracket, we can rearrange the factors in any manner, since
the operator T will automatically put them in the necessary order. Then we write the bracket
as
[...]1= TIAM(x) AMX') S(es, 1) S(t, £)S(', — ==)]
= T[A]M(x) A(x) S].
Thus
D (x—x") = 0| STIT[A(x) A*(x") S]| 0). (100.5)

It is easily shown by a similar argument that this formula is also valid if 7 < #'.

We shall now prove that the factor S~* can be taken outside the averaging over the vacuum
to form a phase factor. To do so, we recall that the Heisenberg vacuum wave function @
is the same as the value @, (— =) of the wave function of the same state in the interaction
representation (see (99.9)). From (73.8),

Sd}im(— °°) = S(+ e, — °°)d)int(“ °°) = ¢int(+ °°)-

The vacuum is a strictly stationary state, in which no spontaneous processes of particle
generation can occur. In other words, in the course of time the vacuum remains the vacuum;
this means that @, ,(+ <) can differ from @, (— =) only by a phase factor ¢™. Hence

SOin(— =) = € Digy(— =) = (0S| 0) Py — =), (100.6)
or, taking the complex conjugate and using the unitarity of the operator S,
Pl — =)S™1 = (0]S]0) "1 D (— ).
Hence it is clear that (100.5) can be written

o (0| TARY(x) Ai"{(x") S| 0)
Dp(x—x") =1 “<O|S|O) ’ (100.7)

Substituting in the numerator and the denominator the expansion (73.10) for S and aver-
aging by means of Wick’s theorem (§78), we get an expansion of /D, in powers of e2.

In the numerator of (100.7), the quantities to be averaged differ from the matrix elements
of the type (78.1) only in"that the ‘“‘external” photon creation and annihilation operators
are replaced by Aij"(x) and A(x’). Since all the factors in the products to be averaged
are preceded by the time-ordering symbol, the pairwise contractions of these operators with
the “internal” operators A™(x;), A™(x,), ... will give the photon propagators D, . Thus
the results of the averaging are expressed by sets of diagrams with two free ends, constructed
in accordance with the rules in §78, except that propagators D,,, not the amplitudes e of
real photons, correspond to external (and internal) photon lines. In the zero-order approxi-
mation, with S = 1, the numerator of (100.7) is simply D,(x—x"). The next non-zero terms
will be proportional to e2. They are represented by a set of diagrams having two free ends
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and two vertices:

S (100.8)

The second of these diagrams consists of two disconnected parts: a broken line (correspond-
ing to —iD,,) and a closed loop. The separation of the parts of the diagram signifies that
the corresponding analytical expression separates into two independent factors. On adding
to the diagrams (100.8) the zero-order approximation diagram (a single broken line)
and “‘taking it outside the brackets”, we find that the numerator in (100.7) is, as far as
second-order terms,

___{,+<:>}+ e

The expression (0 | S| 0) in the denominator of (100.7) is the amplitude of the “transition”
from the vacuum to the vacuum. Its expansion therefore contains only diagrams without
free ends. In the zero-order approximation, (0|S|0) = 1, and as far as second-order terms

ERE =4

When the numerator is divided by the denominator we get, to the same order, the expression

——<:j»—— R

Thus the diagram with the detached loop does not occur in the result. This is a general
theorem. Having regard to the way in which the diagrams are constructed which correspond
to the numerator and denominator in (100.7), we can easily see that the role of the denomi-
nator (0 | S| 0) is simply to ensure that in all orders of perturbation theory the exact propa-
gator D, will be represented only by diagrams which do not contain separated parts.

The diagrams with no free ends, forming closed loops, have no physical significance and
need not be taken into account, quite apart from the fact that they disappear when the
propagator D is formed. Such loops represent radiative corrections to the diagonal element
of the S-matrix for a vacuum-vacuum transition; but, according to (100.6), the sum of all
these loops, together with the unity given by the zero-order approximation, gives only an
unimportant phase factor, which cannot affect any physical results.

The change from the coordinate representation to the momentum representation is made
in the usual way. For example, in the second-order approximation of perturbation theory,
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the propagator —i/D ,(k), which will be shown by a thick broken line, is the sum

——-kq-— ~ ——--:-— + ——T—O——r— (100.9)

in which all the diagrams are calculated by the general rules given in§78 except that factors
—iD,, (k) areassigned to the external as well as the internal photon lines. In analytical form,
we therefore have'

D k) ~ D,ufk)+ i€*D,a(k) f tr * G(p + k) *G(p) (5354 Dofk);  (100.10)

the bispinor indices of the matrices y and G are, as usual, omitted.

The terms in subsequent approximations are constructed in a similar manner, and are
represented by sets of diagrams having two external photon lines and the appropriate
number of vertices. For example, the terms in e* correspond to the following four-vertex
diagrams:

The diagram

also has four vertices; its upper part is a loop formed by a single “‘self-closed” electron line.}

Such a loop corresponds to the contraction vIa(x) $(x), i.e. to the value of the current aver-
aged over the vacuum: (0 | j(x) | 0). But, by the definition of the vacuum, this quantity must
be zero identically, and the identity cannot of course be altered by any further radiative
corrections to such a loop.® Thus no diagrams having “self-closed” electron lines need be
considered in any approximation.

The part of a diagram which lies between two (external or internal) photon lines is called
a photon self-energy part. In the general case, it can itself be divided into parts joined in pairs

T The factor — 1 from the closed electron loop must be taken into account when deriving the signs.

:F Unlike the loop in (100.8b), which is formed by two separate electron lines.
§ Although a direct calculation from the diagrams would lead to divergent integrals.
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by a single photon line, i.e. it has a structure of the form

O--O- .. <O

where the circles denote parts which cannot be further subdivided in the same manner;
such parts are said to be compact or proper. For example, the first three of the four fourth-
order self-energy parts (i00.11) are compact.

Let i{D,,/4m denote the sum of the infinity of compact self-energy parts. The function
P,k is called the polarisation operator. When the diagrams are classified by the number of
compact parts which they contain, the exact propagator 2, can be put in the form of a series

where i), /4x corresponds to each shaded circle. The analytical form of this series is

D =D+D @D+D@ (?ZD-F
=D{1+4%[D+D4@ " ]} (100.12)
where the indices are omitted, for brevity. The series in the brackets is again 2. Hence
D (k) = D,(k)+ Da(k) ———— @A@(k) D fk). (100.13)

Multiplying this equation on the left by the inverse tensor (D)™ and on the right by
("»~1y”, and renaming the indices, we get the equivalent form

1

2= P (100.14)

@_lyv = D7,—
It must be emphasised that writing /2 in the form (100.12) assumes that the diagrams can
be broken down into simpler parts calculated by the general rules of the diagram technique,
and that the combination of such parts gives the correct expressions for the entire diagrams.
The admissibility of this breakdown of the diagrams is an important and by no means trivial
feature of the diagram technique, which arises from the fact that the overall numerical factor
in the diagram does not depend on the order of the diagram.
The same property enables us to use the function 2 (assumed known) to simplify the
calculations of the radiative corrections to the amplitudes of various scattering processes:
instead of treating afresh each time the diagrams with different corrections to the internal
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photon lines, we can simply make these lines thick, i.e. assign to them the propagators D
(instead of D) in the appropriate approximation.

If the photon line corresponds to a real and not a virtual photon, i.e. if it is a free end
of the whole diagram, the application to it of all the self-energy corrections gives what is
called an effective external line. It corresponds to the expression obtained from (100.13)
by replacing the factor D by the polarisation amplitude of the real photon:

fD:(rk)_ &, (100.15)

e,+ D, (k)

For an external-field line, e, in this expression is to be replaced by Aff).

The discussion in§77 of the tensor structure and the gauge non-uniqueness of the approxi-
mate propagator D, applies to the exact function 0, also. Considering only the relati-
vistically invariant representations of this function, we can write it in the general form

k.k,
k2

D k) = D(k?) (g,m,— )+ DD (k?) kgf : (100.16)

the first term corresponds to the Landau gauge, and in the second term D is a gauge-
arbitrary function. The corresponding form of the approximate propagator' is

D,u(k) = D(k?) (g,,,— k;:fi) +DD(k2) i;;k . (100.17)

The longitudinal part D of the propagator is related to the longitudinal part of the
potential vector, which has no physical significance. It is therefore not concerned in the
interaction and is unaffected by the latter, so that

DB — pi.

The inverse tensors must, by definition, satisfy the equations
H— Av . SA —

PL0D¥ = &, D1 D% =&

When the original tensors have the form (100.16) or (100.17), the inverse tensors are

B 1 k.k, 1 kk,
D = D (guv - _/:T) DI ;;2 >
- 1 kK, I kk, (100.18)
w = (g,‘,— K2 )+ DD g2
From (100.14), the polarisation operator ), is a transverse tensor :
g k.k,
Dw = PK*) (g,,.—ﬁ—) : (100.19)

t In this formula D is not the same as in (77.3).
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where D = k2—4n|D, or
47
k[1—D(k?) [k

D(k?) = (100.20)
Thus the polarisation operator, unlike the photon propagator itself, is a gauge-invariant
quantity.

§101. The self-energy function of the photon

In order to examine further the analytical properties of the photon propagator, it is useful
to define, as well as the polarisation operator, another auxiliary function /7,,(k), called the
self-energy function of the photon: ill |4z is defined as the sum of all self-energy photon
parts (not only the compact ones). If this sum is represented in the diagram by a square,
we can write the exact propagator as the sum

ie.
1%

Dy = Dyt Dy -y

D,,. (101.1)

Hence, expressing I1,, as
1

EH/J, == D__lﬂ/z @MD_IQ,,—D_I#,

and substituting (100.16)-(100.18) followed by (100.20), we get

_ Kk, __ P
11,, = IT(k?) (gy,__lzé_), ==t (101.2)

Thus 11, like P, , is a gauge-invariant tensor.
The usefulness of 17, arises from the expression for it in the coordinate representation.
This is easily found by noting that the equation
1
G Hotk) = D4 D7 { D (k) — D(k)},
in which
B 1 R 1 kuk,
D 1u}.(k) = IT’ (k-g/w_kukv)"f' 'ﬁﬁ -)\—’2—— )
can be written in the coordinate representation

1
I, (x—x") = yp (0,0;,—8.10,0° (0, 0,—8&,, 0, 0"°)D*(x—x")— D*(x —x')}.
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since the tensor D* — D* is transverse. In order to carry out the differentiation, we must
substitute

D*(x —x')— D*(x—x') = i(0| TAX(x) A%x") —TAk(x) A%(x")| 0). (101.3)

In §76 we have seen that the differentiation of a T product generally demands caution,
because the product has discontinuities. But the difference that is to be averaged in (101.3)
is continuous, and so are its first derivatives, since the commutation rules are the same for
the components of the operators A*(x) and Al,(x) for a given time, and the corresponding
discontinuities cancel out (cf. §76). The difference in (101.3) may therefore be differentiated
under the symbol T. According to (99.6) and (99.6a), the result is the required expression

I (x—x') = 4mie>(0 | Tj (x) j.(x")] O). (101.4)

This shows explicitly the gauge-invariance of I7,,, since the current operators are gauge-
invariant.

From (101.4) we can derive an important integral form of this function. According to
(101.2), it is sufficient to consider the scalar function I7 = %H,’j In the coordinate represen-
tation,

M(x—x') = 13’5 ie%0 | Tj,(x) J(x") | 0)

4o Y {01ju(x)|n)y{n|j(x")|0) for t>¢,
e B T . (101.5)
3 S Ojx) n) (n]|j4x)| 0y for 1<t

where n labels the states of the system electromagnetic field + electron—positron field.*
Since the current operator j(x) depends on x* = (¢, r), its matrix elements also depend on x.
The relationship can be found explicitly by taking as the states | n) states which have definite
values of the total 4-momentum.

The time dependence of the current matrix elements, like that of any Heisenberg opera-
tor, is given by

(n]j“(t, r)| my = (n| j(r)| me="En—Ent

where E, and E,, are the energies of the states | n) and | m), and j(r) is the Schrodinger opera-
tor.

To determine the coordinate dependence of the matrix elements, we consider the operator
J(r) as being the result of transforming the operator j(0) by a parallel translation over
the distance r. The operator of this translation is exp (ir-P), where P is the total mo-
mentum operator of the system (see QM, §15, Problem 1). Using the general rule for the

* The current operator conserves charge ; hence the states | ny, combining with the vacuum | 0), can contain
only the same numbers of electrons and positrons.



