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PREFACE

The purpose of this monograph is to make available in
English the elementary parts of classical algebraic number
theory. An earlier version in mimeographed form was used
at Cornell University in the spring term of 1947-48, and
the present version has accordingly profited from the
criticisms of several readers. I am particularly indebted to
Miss Leila R. Raines for her painstaking assistance in the
revision and preparation of the manuscript for publication.

Harry PoLLARD
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CHAPTER I

DIVISIBILITY

1. Uniqueness of factorization. Elementary number
theory has for its object the study of the integers 0,
+1, £2, ---. Certain of these, the prime numbers,
occupy a special position; they are the numbers m which
are different from 0 and =1, and which possess no factors
other than +1 and 4m. For example 2,3, —5 are prime,
whereas 6 = 2-3, 9'= 3’ are not. The importance of the
primes is due to the fact that, together with 0 and =1,
all the other integers can be constructed from them. The
fundamental theorem of arithmetic asserts that every
integer greater than 1 can be factored in one and only one way,
apart from order, as the product of positive prime numbers.
Thus

12 = 2.3 = 2:3.2 = 3-2°

are the only factorizations of 12 into positive prime factors,
and these factorizations all yield precisely the same
factors; the only difference among them is in the order of
appearance of the factors.

We shall give a proof of the fundamental theorem of
arithmetic. In the course of it the following fact will
play a decisive role: every collection, finite or infinite, of
non-negative integers contains a smallest one. The validity
of this assumption will not be debated here; it is certainly
clear intuitively, and the reader may take it to be one of
the defining properties of integers. Some preliminary
theorems will be established first.

TueoreM 1.1. If a and b are integers, b > 0, then there
exust integers q and r such that

a=bg+r,

where 0 < r < b. The integers q and r are unique.
1




2 DIVISIBILITY

-g-a,nd let ¢ be the largest

integer which does not exceed it. Then ¢ < b ,butg+1>

Consider the rational number

%—. Define r as @ — bg. Since % = % —¢>0,andb > 0, it
follows that » > 0. Also from1 > % — a —bg _

b 17 T

Ll
b
we conclude that r < b.

To show that ¢ and r are unique suppose that ¢’ and 7’ is
any "pair of integers for which

a=0by + 7, 0 <hb.
If ¢" > g, then ¢’ > ¢ + 1, so that
"=a—-b <a—-blg+1)=r—>b<0;
this contradicts 7 > 0. If ¢’ < g, then ¢ < ¢ — 1, so that
=q¢—b2a—blg—1) =r+b>b;
this contradicts " < b.

Then both possibilities ¢’ > ¢, ¢’ < ¢ are ruled out. It
follows that ¢’ = ¢, and hence that 7’ = r. This completes
the proof of Theorem 1.1.

We shall say that two integers a and b are relatively
prime if they share no factors except ==1. Thus 5 and 9 are
relatively prime, whereas 6 and 9 are not.

THEOREM 1.2. If a and b are relatively prime then there
exust integers s and t for which as + bt =

Observe that there is no assertion about the uniqueness
of sand ¢. In fact if @ = 3, b = 5 we have

2:3—15=1, —-3-3+2:5=1.

To prove the theorem note first that neither a nor b can
be zero. Consider the set of all numbers of the form
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ar + by, where z and y are integers. If we choose z = 1,

y = 0, and then x = —1, y = 0, it is clear that ¢ and —a

are both in the set. Since ¢ % 0, one of @ and —a is positive,

so the set contains some positive numbers. Let d be the

smallest positive number in the set, and write d = as + bt.
By Theorem 1.1 we can find ¢ and r so that

b=dq+1" 0S7‘<d.
Then
r=>b—dg="0— (as + bt)g = a(—sq) + b(1 — qt),

so that r is also in the set. Now 0 < r < d is not possible,
since d is the least positive number in the set. The only
alternative is r = 0. Hence b = dg. A similar argument,
beginning with

a=dq + 1, 0<r<d

shows that »’ = 0, a = dq’.

This proves that d is a factor shared by both @ and b.
But a and b are relatively prime, so that d = =1; moreover
d is positive, so it must be 1. Hence 1 = as + bt.

In what follows the notation “m | n”’ means “m divides
n” or ‘““m is a factor of n”. If m is not a factor of n we write
m 4 n. The following theorem is the key to unique fac-
torization.

THEOREM 1.3. If p is a prime number and p | ab, then
plaorplhb.

The possibility that p|a and p|b is not excluded .
by the theorem.

If p|a there is nothing to prove. Suppose then that °
P 4 a; we shall show that in this case p must divide b.
Since p and a are relatively prime there exist integers
! and m for which

lp + ma = 1, lpb 4+ mab = b. .
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This follows from the preceding theorem. Since p | ab we
can write ab = pq. The last formula becomes p(lb + mg) =
b, so that p | b.

CoroLLARY 1.4. If a prime number p divides a product
aas -+ - a, of integers, it divides at least one of the a; .

For if p divides no a;, then by Theorem 1.3 it cannot
divide any of

0s , (@102)as , =+, (@102 * -+ Gu_1)s .

We are now in a position to prove the fundamental
" theorem stated in the opening paragraph of the chapter.
Let m be a positive integer not 1. If it is not prime suppose
it factors as m = myms , where m; > 1, my > 1. If m; and
me are primes, stop; otherwise repeat the procedure for
my and mp, and continue it for the new factors which
appear. Eventually we must arrive at a stage where none
of the factors will decompose again. Otherwise m, which
is a finite integer, would be the product of an arbitrarily
large number of factors all greater than 1.
Thus we arrive at a factorization

m = PPz *** Pr,
where each p; is positive and prime. Suppose
m = qlq2 Ve qs

is any other factorization of m into positive primes. We
must prove that the two factorizations differ at most in the
order in which the primes appear. Since

p1p2 DR pf = q1q2 DR qs
it follows from Corollary 1.4 that ¢; must divide one of the
p: . We may suppose it to be p; , by renumbering the p; if

necessary. Then ¢ | p; . Since p; and ¢, are positive and
prime p; = ¢; . Hence, dividing out p; = ¢1, we obtain

p2...pr=q2...qa‘
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This procedure can be repeated with ¢», ---, until all
the prime factors on one side are exhausted. At this stage
all the factors on the other side must also be exhausted;
otherwise we should have a product of primes on one side
equal to 1 on the other. Then r = s and we are done.

If we try to apply the principle of unique factorization to
negative integers, we encounter an obvious difficulty in the
possible presence of minus signs in the factors. Thus

—12 = 2%(=3) = (—=2) (-3) (-2)

are two factorizations of —12 into primes, and these fac-
torizations differ not merely in the order of the factors, but
in the factors themselves. For in the first case the factors
are 2,2, —3; in the second case they are —2, —3, —2. This
difficulty can be remedied by a slight restatement of the
fundamental theorem to include negative numbers. Let 1
and —1 be called units. The new statement is this.

THEOREM 1.5. (The Fundamental Theorem). Each integer
not zero or a unit can be factored into the product of primes
which are uniquely determined to within order and multiplica-
tion by units.

The slight change in the original proof which is needed
here will be left to the reader.

2. A general problem. We are now in a position to
state the basic problem of algebraic number theory: if we
extend the meaning of “integer” to include a wider class of
numbers than the numbers 0, =1, 42, - - - is there still a
valid analogue of Theorem 1.5? The nature of the question
can best be made plain by examples.

For this purpose we select first the Gaussian integers.
By such an integer we shall mean a number of the form
@ + b, where a and b are ordinary integers, and ¢ = v/ —1.
To avoid confusion later we shall refer to the ordinary
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integers as the rational integers. Let G denote the set of all
Gaussian integers, and J the set of all rational integers.
Note that in each set the sum, difference and product of
integers are integers.

If « and B are numbers in G we say that « divides S,
written a | 8, if there is a number ¥ in G such that 8 =
An element of G is a unit if it divides 1, and hence also -
every element of G. A number 7 is prime if it is not a unit
and if in every factorization 7 = of one of « or 3 is a unit.
With this terminology Theorem 1.5 becomes meaningful
for the integers of G.

But is it true? It is, as we shall show presently. This fact
may strike the reader as only what is to be expected. That
such an impression is erroneous we demonstrate by
exhibiting another simple class of “integers” for which
Theorem 1.5 is meaningful, but false.

Let us now mean by an “integer’’ any number of the form
a + b~/ =5, where a and b are rational integers. Clearly the
sum, difference and product of such integers are of the same
form. We shall denote the totality of them by H. Define
unit and prime just as we did for the Gaussian integers
by simply reading H for G wherever the latter occurs.
As we shall prove a little later, 1 are the only units in H;
the numbers 3,7,1 + 2 1/=5,1 — 2 +/—5 will turn out
to be prime in H. But observe that

=(14+2+4=5) 1 —-2+-5),

so that the factorization of 21 into prime factors is not
unique to within order and multiplication by units.

It is therefore reasonable to ask for which classes of
“integers’’ the fundamental theorem holds, and for which
it does not. In particular how does one explain the dis-
crepancy in behavior between the sets J and G on the one
hand and H on the other? The answer to these questions
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must be postponed until later. For the present we content
ourselves with demonstrating the assertions just made
concerning the sets G and H.

3. The Gaussian integers. If o = a + bi is an element of

G its norm N(a), or simply Ne, is defined to be as =
al’ = a” + V. (a is the complex-conjugate of a). The
following list contains the fundamental properties of the
norm.
() If ¢ isin J as well as in G, then No: = o,
(ii)) N(eB) = NaNB.
(i) No = 1if and only if « is a unit.

(iv)

=0 ifa =0,
Na<=1 if @ = 41 or =3,

>1 otherwise.

(v) If Na is prime in J, then « is prime in G.
The proof of (i) is obvious since b = 0. To prove (it
observe that if « = a + b, 8 = ¢ + dz, then

(aB) (@B) = (@) (BP).

As for (iii), suppose first that « is a unit. Then « | 1, so
off = 1 for some 8. By (ii) NaNB = N1 = 1, and N« | 1.
Since N must be a non-negative integer, Na = 1. Con-
versely if Na = 1, o> + b* = 1,sothata = O or b = 0.
Then @ = 1, —1, 7 or —3, and these are obviously units.
This argument also establishes most of (iv); the rest we
leave to the reader.

Finally to prove (v), suppose Na is prime and a = (y.
Then Na = NBN& is prime in J. So one of NB or Ny is
equal to 1, and by (iii) either 8 or v is a unit.

The converse of (v) is false. To see this it is enough to
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show that 3 is prime in G, for N3 = 3’ = 9. Suppose
3 = of. Then 9 = NaNB. If neither o nor 8 is a unit
Na = 1, NB # 1,50 Na = NB = 3. But this means that
if @ = a + bi, then a® + b* = 3; this is impossible for any
pair of integers a, b in J. (why?)

In proving that Theorem 1.5 holds for the Gaussian
integers we shall imitate as far as possible the proof
already given for rational integers.

TaroreM 1.6. If a and B are Gaussian integers, B # 0,
then there exist two integers = and p such that

Consider the number-g— = A + Bi, where A and B are

ordinary rational numbers. Choose rational integers
s and ¢ such that
|4 —-s|<3% |B—-t|<3

This we can always do by choosing s and ¢ as rational
integers nearest to A and B respectively. Now let = =
s+ ti,p=a— nB.

To show that Np < NB observe that

lp|=la—m8|=la—(s+t)8| =8|
— 18114 —8) + (B—1i| = |BI{(4— s+ (B— )"
1/2
< |BI{%+%;} <18l

Since No = |p|* < |B|° = NB, the inequality is es-
tablished.
As an example let « = 5 — 7,8 = 1 + 2i. Then
a _ (b-—901-2) _3 11.

5 (F¥201—2) 5 57

g—s—ti}
6
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soA——%,B= — 1, Take s = 1t——21r—1—2z,
=6-1))—1—-2)Q4+2)=5—-2—5=
Then

5—7=00—-2) 14 2) — <,

and N(—17) < N1 + 20).
Let the reader show by an example that, in contrast to
Theorem 1.1, = and p are not uniquely determined.

THEOREM 1.7. If 7 is a prime and = |afB, then = |«
orm | B.

If = |« we are done; so suppose 7 4 «. We shall prove
that = | 8. :

By Theorem 1.6 we can find § and p so that

a = ér + p, Np < Nx.

Moreover Np #= 0, for otherwise p = 0 so that = | @,
contrary to assumption. So 0 < Np < Nr.

Consider all integers in G which are different from zero
and are of the form a¢ + 7. Call the totality of them 7.
p = a — wd is an integer in 7'. By property (iv) of norms in
G, every element in 7" has norm at least equal to 1, so there
must be one of them v = af + w7 which is of least
positive norm. Now p = o — 76 is in T and has norm less
than N7. Since v is of least norm, then also Ny < Nr.
We show next that v is actually a unit.

Choose 6 and ¢ so that

7.|'=0"/+§', ' N¢ < Ny,

Since {f = 7 — 6y = © — 0(aty + 7)) = a(—06&) +
(1l — Ono), N¢ = 0, for if Nt # 0, then ¢ would be an
element of 7' of smaller norm thany. So ¢ = 0 and 7 = O,
Nm = NON~. One of § and v is a unit since = is a prime. But
if N6 = 1, then Nm = Ny, which contradicts N= > Nv.
So 6 is not a unit, which means that v is.
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Hence v = af + o is a unit. Now
ok + B = vP.

Since 7 | o8 by hypothesis and = | 7870 , then also = | vB.
So v8 = =7 for some 7 in G. Then 8 = =(7/v) and = | B,
for 7/v is in G.

To prove that Theorem 1.5 is valid for the integers of G
we proceed much as in the case of the rational integers.
If & is not a unit or a prime let @« = a0z , where Noy > 1,
Noz > 1. Repeat this procedure for ¢; and «; , and continue
it. It must stop sometime, for otherwise Na would be the
product of an arbitrarily large number of factors each
greater than 1. So & = m; - - - w, , where the 7; are primes.
If also & = o1 -+ o:, where the ¢; are primes, then by
Theorem 1.7 ¢; must divide one of the m;, say = . Hence
o1 = mé€ , where ¢ is a unit. Then

T **° Wy = €02 *** Ot

We can now complete the proof as we did for J.

It remains finally to establish the still unproved state-
ments about H made in the preceding section, namely that
=1 are the only units, and that 3,7,1 + 24/ —5,1 — 2
4/ =5 are prime numbers in H.

If a = a + b~/—5, define Na = oz = o’ + 5b°. As
before, N(a) = NaNB. ais a unit if and only if Na = 1;
the proof goes as in the case of the Gaussian integers.
But @’ + 5b° = 1 only whenb = 0,0 = 41,50 @ = =+1
are the only units in H.

To show that 3 is a prime, suppose 3= «f, where neither
a nor B is a unit — that is, Na # 1, NB # 1. Since 9 =
N3 = Na-NB, then No = NB = 3,s0 & + 5b° = 3.
If b % 0 then o’ + 5b° > 3, so b must be zero. But then
o’ = 3, which cannot occur for an integer @ in J. Similarly
if 7 = aB, Na 5% 1, NB = 1, then @’ + 5b° = 7. If b 0,
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b* 5 1 then a® + 5b° > 7. So either b = 0, @* = 7, which is
impossible, or b = =41, a* = 2, which is also impossible.

The numbers 1 = 24/ —5 are prime, forif 1 +=2+/—5 =
af, then N(1 & 2 v/ —5) = 21 = NaNp. Unless one of
aorfisaunit No = 3 or NGB = 3, and this possibility
has already béen excluded. ‘

An additional example of a class of “integers” for which
unique factorization is valid is given by the set of numbers
a + bw, where w = 3(—1 4+ A/ —3). The reader who is
interested in the details will find them given in Chapter XII
of the book of Hardy and Wright listed in the bibliography.



CHAPTER II

THE GAUSSIAN PRIMES

1. Rational and Gaussian primes. It is not difficult to
establish the existence of an infinite number of rational
primes—that is, primes in J. The simplest proof, due to
Eueclid, goes as follows. Suppose p1, P2, - - - , Pn are known
to be prime. Then the number N = 1 + pip2 - Pa
cannot have any one of the p; as a factor, since then 1
would also have that p; as a factor. Then any prime factor
of N is different from p;, ---, p.». This means that if
any finite set of prime numbers is given, there is a prime
different from any of them; so there are an infinite number
if there is at least one. But 2 is a prime, and the conclusion
follows.

Precisely the same proof is valid for Gaussian primes
provided only that we can find one prime. But 3 has
already been shown to be a Gaussian prime, so that G
contains an infinity of primes. We can accomplish con-
siderably more: we shall characterize explicitly all the
primes in @ in terms of those in J. In order to achieve this
we shall need some material from elementary number
theory. Actually we shall prove somewhat more than we
need for the present purpose. The additional results
will find application later.

2. Congruences. In this section we deal only with
rational integers.

Let m be an integer not zero. Two integers @ and b are
said to be congruent modulo m, written

a=b(modm) or a=b (m),
if m|(a — b). If @ and b are not congruent mod m we
writea £ b (m).
12



