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Preface

In the preface to The Physics of Fluid Turbulence, which was published in 1990, 1
suggested that turbulence research had become ever more scientific and sophisticated
over the previous three decades—to the point where it could be argued (in effect) that
a monograph concentrating on the physics of turbulence was justified. Given that the
subject was then, and remains now, dominated by engineers and applied mathem-
aticians, this might have been seen as a rash step. However, in practice, that proved
not to be the case. And what turned out to be true then is even more so some two
decades on. In particular, the growth of numerical simulation as a discipline has had a
positively transformative effect on the subject. For instance, Fourier methods, which
once tended to arouse suspicion or even hostility, are now widely used. Indeed, the
study of homogeneous, isotropic turbulence, which used to be regarded as a minority
cult, with no relevance to applications, is now very much a major field of research. It
even has its own three-letter acronym (HIT): a sure sign of success!

The principal justification for studying HIT is that it tends to focus our attention
on the fundamental problem of turbulence. As we all know, turbulence presents a
very difficult fundamental problem. This is because the equations that govern all fluid
motion are nonlinear and hence, in general, insoluble. Naturally, that goes for turbulent
motion as well. But it is made worse by the chaotic nature of that motion. This forces
us to attempt a statistical treatment; and a statistical description of turbulence runs
into the unsolved moment-closure problem, as formulated more than one hundred years
ago by Osborne Reynolds.

In more recent years, the development of numerical simulation has also led to the
concept of large-eddy simulation and its associated subgrid modelling problem. This
is a ‘reduced’ form of the closure problem, but is still in principle insoluble. The result
is that we are thrown back on a mixture of phenomenology, mathematics (which can
be formidably complicated and sometimes rather exotic), and a variety of ad hoc
approximations. In this respect, turbulence is just like all the other bedrock problems
in theoretical physics.

Given that the turbulence problem is inherently difficult, the starting point of this
book is a recognition of the general unease felt by some members of the turbulence
community, myself included, about certain basic aspects of the present state of the
subject-—about, in fact, aspects that should be among the more tractable of our dif-
ficulties and that involve no more than clarification of basic phenomenology. In this
connection, well-established researchers have written of the tentative nature of much
of the work in turbulence, unlike in other subjects. Or of the need to resolve long-
standing issues, which stand in the way of successful applications of the subject. Or
on the difficulty of publishing a ‘different’ or ‘unconventional’ opinion. Recently, we
have had a very remarkable example of this, when a theoretical paper rejected ten years
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Now we come to Part III, which deals with the statistical theory. This brings
us to an example of what, in the UK, is often referred to as ‘the elephant in the
room’—In other words, some large awkward fact, of which everyone must be aware,
but which nobody discusses. Here, our ‘elephant’ is the fact that there are two rival
approaches to a theory of turbulence. That is, to use a rough categorization, there are
approaches in the spirit of statistical physics versus approaches based on dynamical
systems theory. Both of these approaches have been part of turbulence research for
much the same length of time, but have traditionally addressed different aspects of
the problem. The statistical approach was initiated by Reynolds in 1895, when he
averaged the Navier—Stokes equations. Thereafter, the main emphasis in turbulence
research has been on the use of statistical methods. In contrast, the treatment of fluid
motion as a dynamical system was limited to the study of hydrodynamic stability, and
originally to the problem of the laminar—turbulent transition, beginning in 1907/08
with the work of Orr and Sommerfeld.

The statistical treatment of developed turbulence was dominant throughout most
of the last century, but two factors led to increased interest in dynamical systems
theory. First, there was the discovery of coherent structures in turbulence, which sug-
gested that the view of the laminar—turbulent transition as a single, or once and for
all, catastrophe was over-simplified. For instance, the bursting process in turbulent
pipe flow could be interpreted as repeated laminar—turbulent transitions. Second, the
development of personal computers gave a stimulus to the study of dynamical systems
with a few degrees of freedom, with the onset of chaotic behaviour being of particular
interest. Moreover, the study of atmospheric turbulence, in the context of weather
forecasting, led quite naturally (and independently) to an interest in predictability,
and also in reducing the number of modes necessary to describe turbulence.

All this is well known. But in HIT there are no really interesting coherent struc-
tures and, with a formulation appropriate to statistical physics, there is no obvious
laminar—turbulent transition. As a result, some researchers tend to dismiss the dy-
namical systems approach as ‘dealing with only a few degrees of freedom’. However,
bridging the gap between small and large numbers of degrees of freedom is a matter
of renormalization, the seminal technique that has dominated statistical closure ap-
proximations since the 1960s. Indeed, in microscopic physics, the successful use of the
renormalization group involves both statistical physics and dynamical systems theory.
So there seems to be no reason why these two approaches should be hermetically sealed
from each other.

In Part III, we begin with a consideration of renormalized perturbation theor-
ies that lead to two-point closures. Our intention here is to draw a clear distinction
between the uncontroversial aspects of the subject and those issues that require some
resolution. Accordingly, in Chapter 9, we present the Kraichnan-Wyld-Edwards co-
variance equations, which essentially reformulate the closure problem as a search for
an appropriate renormalized response function. Despite the large number of acronyms
(DIA, SCF, LET, EDQNM, and so on) that are associated with turbulence theory
(and which are confusing to the non-specialist), there really is just one covariance
equation (that is, if one considers single-time covariances—there are two such equa-
tions in the two-time case). In Chapter 10, we discuss the more controversial aspects,
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and show that in recent years some of these have been resolved. Chapter 11 deals with
the renormalization group, and our emphasis here is on distinguishing the inappropri-
ate use of the field-theoretic methods of microscopic physics from the relatively small
body of work that involves a genuine attempt to directly apply the basic RG algorithm
to turbulence. Chapter 12 is a postscript dealing, as its title suggests, with some ap-
proaches that are still being developed, and attempts to indicate some promising lines
of research. ‘

In all, the aim of this book is to simplify, and at every stage to draw clear dis-
tinctions between what one can believe and what still requires caution or further
clarification. To this end, Chapter 1 provides a particularly simple overview of the
material of the rest of the book. It has been done in this way in order to allow the
main ideas to stand out.

One thing that T should emphasize is that this book is in an entirely different
category to my 1990 book, most of which is still as relevant today as when it was pub-
lished. The Physics of Fluid Turbulence aimed to formalize turbulence theory as part
of statistical physics and to demystify renormalization methods by providing very de-
tailed mathematical expositions, and also presented accounts of work in drag reduction
by additives, and in turbulent diffusion, both of which required a consideration of vari-
ous shear flows. In contrast, the present book is restricted to homogeneous, isotropic
turbulence, in order to consider only the core fundamental problems. At various points.
it refers to the previous book for the detailed mathematics, and concentrates on phys-
ical interpretation of renormalization theories in order to make it clear what can be
believed and what requires caution. It also presents recently published research aimed
at clearing up long-held misconceptions and unresolved issues in the phenomenology
of turbulence.

Lastly, it is a pleasure to acknowledge the help received from my students. Sam
Yoffe (who has now completed his PhD) helped with the preparation of some figures
and some parts of the text (in particular, Section 12.2 and Appendix B), and also
read some chapters in draft. Moritz Linkmann has also helped with the preparation
of some figures, and has read the entire book, pointing out errors and raising queries
as appropriate. At various points in the book, I have drawn on the PhD theses of
Mark Filipiak, Adrian Hunter, Craig Johnston, Khurom Kiyani, Bill Roberts, David
Storkey, Alastair Young, and Taek-Jin Yang. This is in addition to the citation of their
published work, and is acknowledged as appropriate in the text. However, it seemed a
good idea to collect them all together here and offer my retrospective thanks. During
the course of writing the book, my re-reading of these theses took on an aspect of time
travel, and it was a great pleasure to be reminded of so much fine work on their part.
This made me think of all my other students (and post-docs, too) who over the years
contributed so much. In some cases, their published work has been cited here, but in
other cases it would not have been relevant. For this reason, I regard the present book
as being dedicated to them all.

David McComb
Edinburgh
February 2014
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Notation

General remarks

The list of notation given here is not intended to be complete. It is provided to help the
reader identify symbols that are encountered at various points throughout the book.
Those symbols that only occur near to where they are defined are not included. The
use of the subscript ‘zero” on the kinematic fluid viscosity is to draw attention to the
fact that it can be renormalized. This avoids having to rename it vy when beginning
renormalization methods. I hope that readers can live with it in the vast majority of
cases where there is no renormalization involved!

Lastly, to avoid any possible confusion, I should mention some changes of notation.
Until recent years, I followed the example of Edwards and used @ for correlations,
G for response (i.e. Green) functions, and D for projection operators. There is no
universal convention. Some people follow Kraichnan and use U for correlations and
G for response, while others use a variety of symbols. The use of P for projectors
is, however, near universal, and belatedly I have adopted it, although I still use M
for the inertial transfer operator. As regards correlation and response functions, when
studying the application of fluctuation-response theory to macroscopic systems in
recent years, I noticed that dynamical systems theorists seemed to be standardizing
on C for correlations, covariances, etc., while R was used for response functions. This
seemed eminently logical to me, so I adopted it and have used it in this book.

Italic symbols

shift velocity of the Galilean transformation

Cnn(r)

C.

D(k): D(k.t)
8, = 0/t
E(k): E(k, 1)

E = [ E(k) dk

fa(x,1)
fa(k,t)

covariance or correlation of fluctuating velocities

correlation function of fluctuating velocities in isotropic turbu-
lence

covariance of fluctuating velocities in wavenumber space

energy spectral density function

longitudinal correlation function

transverse correlation function

coefficient for Taylor dissipation surrogate, dimensionless dissip-
ation rate

energy dissipation spectrum

contracted notation for the partial derivative with respect to time
energy spectrum

total kinetic energy of turbulence

random stirring force with zero mean

random stirring force with zero mean in wavenumber space



F(k)
f(r)

g(r)

kbota ktnp
ke

ka

kminy Emax

k.
l

L
Lbox

L(k.j)

Mo~ (K)
Paﬁ(k)
R(k;t,t')

Ry,

Ry

S

Sn(r)

T(k): T(k.t)

U

u(x,t); ua(x,t)
u(k,t); ua(k,t)
W (k) = 4nk*F (k)

Greek symbols

Y

g

Ep = —BE/Ot

Ep = I—[max

ew = [ W(k) dk

Cn
n
A

1206}

(k. t)

Hmax
212 1 0’”

Notation xix

prescribed covariance of stirring forces

longitudinal correlation coefficient

transverse correlation coefficient

smallest and largest wavenumbers bounding the inertial range
cutoff wavenumber for large-eddy simulation

Kolmogorov dissipation wavenumber

smallest and largest resolved wavenumbers in direct numerical
simulation

wavenumber where the transfer spectrum T'(k) crosses zero
general length scale, its meaning being defined locally where it is
used

integral length scale

length of side of the cubical box containing the tubulence; other
characteristic length of experimental apparatus

coefficient in the (k, j, ;1) formulation of the turbulence problem
inertial transfer operator in wavenumber space

transverse projector in wavenumber space

response function

integral-scale Reynolds number

Taylor-Reynolds number

skewness factor of the longitudinal velocity derivative
longitudinal structure function of order n

energy transfer spectrum

root-mean-square turbulent velocity

fluctuating velocity field with zero mean

fluctuating velocity field with zero mean in wavenumber space
energy injection spectrum due to stirring forces

Kolmogorov spectral prefactor

instantaneous dissipation rate

mean dissipation rate

energy decay rate

maximum rate of inertial transfer

rate at which stirring forces do work on the fluid

exponents for power-law region of S,,(7)

Kolmogorov dissipation length scale

Taylor microscale

kinematic fluid viscosity

transport power, or flux of energy into mode k& due to inertial
transfer

maximum value of the transport power

scaling exponents for S, (r) as determined by extended self-
similarity



xx Notation

Abbreviations

ALHDI abridged Lagrangian-history direct-interaction

DIA direct-interaction approximation

DNS direct numerical simulation of the Navier-Stokes equations

EDI Eulerian direct-interaction

EDQNM eddy-damped quasi-normal Markovian

EFP Edwards’ (Fokker-Planck) theory

ESS extended self-similarity

FNS Forster, Nelson, and Stephen

FRN finite-Reynolds-number (effects)

FRR fluctuation-response relation

GI Galilean invariance/invariant

HIT homogeneous, isotropic turbulence

h.o.t. higher-order terms

K41 Kolmogorov's (1941) theory

KHE Karman-Howarth equation

LES large-eddy simulation

LET local-energy-transfer theory

LRA Lagrangian-renormalized approximation

MSR Martin—Siggia—Rose

NSE Navier—Stokes equation(s)

pdf probability distribution function(al)

PFT The Physics of Fluid Turbulence, by W.D. McComb (Oxford University
Press, 1990)

QN quasi-normality

RG renormalization group

RGI random Galilean invariance

RGT random Galilean transformation

RPT renormalized perturbation theory

SCF self-consistent field theory

TFM test-field model
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