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Preface

The recent progress in the theoretical mechanics of solids is often not regarded by
the engineering community as a basis for the analysis of practical problems. Despite
the high level of modern theories of thin-walled continua, the vast majority of nu-
merical methods and solutions rest upon approximations of three-dimensional fields
over the thickness. But “there is nothing more practical than a good theory™ (at-
tributed to L. Boltzmann), and the intent of this book is to bridge the gap between the
theoreticians and the structural engineers. Modern methods of analysis contribute to
the elegance and efficiency of the developed theoretical formulations, and finally, to
the trustworthiness of numerical schemes. Their simplicity is demonstrated in the
book by the source code for modeling complicated behavior of thin-walled struc-
tures, which is possible with modern high-level simulation environments such as
Wolfram’s Mathematica.

The science of mechanics resides at the border between physics and mathematics.
It has its own mentality and operates with its own criteria. The appropriate level of
mathematical strictness is well demonstrated by the known joke:

A mathematician, a physicist, and an engineer were traveling through Scotland
when they saw a black sheep through the window of the train. “Aha,” says the engi-
neer, “I see that Scottish sheep are black.” “Hmm,” savs the physicist, *You mean
that some Scottish sheep are black.” “No,” savs the mathematician, “All we know
is that there is at least one sheep in Scotland, and that ar least one side of that one
sheep is black!™

Mathematics provides us with a handy toolbox for breaking new grounds, but expe-
rience shows that a physical way of thinking is often required for pioneering work
in mechanics.

The scope of this book includes mechanical models of classical rods, plates,
shells, and thin-walled rods of open profile, which are unified by the use of common
methods of research. Classical theories of thin structures arise when the two ways
of analysis meet and mutually complement each other. The procedure of asymptotic
splitting in the three-dimensional model of the structure and the direct approach to
an idealized dimensionally reduced continuum with the methods of Lagrangian me-
chanics constitute a very concise and formal method to developing geometrically
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nonlinear theories with a high level of consistency. These analytical technologies
play a central role in the theoretical parts of the book, which is counterbalanced by
an extensive demonstration of possibilities of numerical analysis with the developed
models. The presented material is self-sufficient, and the basic notions are discussed
in the introductory part. Nevertheless, preliminary knowledge in the theory of elas-
ticity, analytical mechanics and basic ideas of the method of finite elements should
be recommended. Many theoretical and especially numerical aspects are illustrated
by examples of mathematical modeling, performed with the Mathematica software.
This modern language of science allows complicated simulations to be performed
residing at the problem-oriented level without the need of programming sophisti-
cated algorithms of numerical mathematics. A short reference for Mathematica is
provided in Chap. 6. The source code of the simulations is an important constituent
ol the text of the book. It practically illustrates the proposed methods of model-
ing and provides the simulation results in their “naked™ form, as nothing is hidden
and everything can be reproduced. The files with these simulations are available for
download at the SpringerLink online platform,' which grants the reader a possibil-
ity to experiment with the developed algorithms or to enhance them, avoiding the
burden of retyping the necessary source code.

The author’s understanding and aesthetic feeling of mechanics were greatly in-
fluenced by the learning and work together with Prof. Vladimir Eliseev (Yeliseyev),
who is still carrying the spirit of the school of mechanics, founded at the Poly-
technic University of St. Petersburg (former Leningrad Polytechnic University) by
Prof. Anatolii I. Lurie. To my father Prof. Mikhail Vetyukov I am obliged for the
decision to choose mechanics for my studies and further work. Prof. Hans Irschik
from the Johannes Kepler University Linz has greatly contributed to the present
work with his vivid interest to the subject and many important comments, which
helped improving the quality and readability of the text. I also express my grati-
tude to Prof. Alexander Belyaev from the Polytechnic University of St. Petersburg,
as well as to Prof. Michael Krommer, Dr. Peter Gruber, Dr. Alexander Humer and
other colleagues from the Johannes Kepler University Linz for important discus-
sions and for their attention to the manuscript. This work has been supported by the
Austrian COMET-K2 programme of the Linz Center of Mechatronics (LCM), and
was funded by the Austrian federal government and the federal state of Upper Aus-
tria. [ am very thankful to my mother Olga and my daughters Anastasia and Elena,
who have been a source of inspiration and encouragement in my life and in writing
this book.

Linz Yury Vetyukov
November 2013

"hitp://link.springer.com/book/10.1007/978-3-7091-1777-4.
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Chapter 1
Introduction

Abstract We begin with a briel discussion of mathematical methods, which to
a large extent determine the success of the analysis of thin-walled structures:
a compact and consistent notation for the invariant tensor calculus in the three-
dimensional Euclidean space: the procedure of asymptotic splitting, which is proven
to be efficient for the dimensional reduction in the theories of thin bodies; the prin-
ciple of virtual work in application to continuum mechanics; variational methods
as a basis for numerical applications. The state of the art in the mechanics of thin-
walled structures is discussed on the example plane stress problem of bending of
a straight strip. In the literature review, the past research in the field is classi-
fied into the method of hypotheses, variational approaches, direct approaches and
asymptotic methods. The introduction is concluded with a discussion of a hybrid
asymptotic—direct approach, which is applied throughout the book to various kinds
of thin-walled structures.

1.1 Fundamentals: Analytical Technologies

The history of structural mechanics includes several important points, which influ-
enced the agenda of research in this field. The solution of Saint-Venant for a pris-
matic rod, the use of variational approaches with approximations of the unknown
displacements, strains and/or stresses over the thickness, the development of nu-
merical methods broadened the spectrum ol treatable problems and increased the
trustworthiness of the results. Nevertheless, the theories of thin-walled structures
are still often regarded as approximate engineering methods. And it means that the
development is yet far from complete.

Recent advances in the analysis of the asymptotic behavior of exact solutions
for thin bodies, as well as in the direct approach to dimensionally reduced continua
allow speaking about a hybrid approach, which is discussed in the last section of this
introductory chapter. This novel way of thinking requires particular mathematical
methods, or, rather, analytical technologies, with which we begin the introduction,
and which constitute a basis for the substantial part of the book.

Electronic supplementary material Supplementary material is available in the online version of
this chapter at http://dx.doi.org/10.1007/978-3-7091-1777-4_1.

Y. Vetyukov, Nonlinear Mechanics of Thin-Walled Structures., |
Foundations of Engineering Mechanics,
DOI 10.1007/978-3-7091-1777-4_1, © Springer-Verlag Wien 2014



2 I Introduction
1.1.1 Invariant Vectors and Tensors in Space

Tensor calculus is inherent to the mechanics of deformable bodies. Here we briefly
summarize the basics of the tensor algebra in three-dimensional Euclidean space,
which allows for a certain simplification in comparison to the general notation, es-
tablished in the mathematical literature.

Vectors in space are defined by their magnitude and direction. One can add vec-
tors, multiply them with a scalar coefficient, or compute scalar and vector products.
A system of Cartesian axes x;, i = |,..., 3, determines a basis, which consists of
three unit and orthogonal (orthonormal) vectors e; with the scalar products

l; =],
e,ejz(s,/E{O’ l?é[, (11)

here the Kronecker symbol §;; is introduced.
A vector can be decomposed in this basis into components:

3
a= E ajei =da;e;. (1.2)
i=I

The Einstein convention is used: repeated indices imply summation. The scalar
product of two vectors, which is commonly defined as a product of their magni-
tudes and of the cosine of the angle between their directions, can be expressed via
components:

a-b=aib,. (1.3)

Components ol a vector are simply computed as a - e; = ayey -e; = aydy; = a;.
Consider another Cartesian basis e’; it is related to the original one e; with the
direction cosines

o ’ i
aik=e;-e.. € =ajre;. (1.4)
The matrix {c;} is orthogonal:
o / /
dij =e; € = Uik jpef ey = ik jpOkn = ik jik; (1.5)

only the terms with equal indices & and n remain in the sum because of 8.
Invariant vectors are independent from the choice of the basis:

'’ !
a=uaje;=qae;, = a;=0ujd. (1.6)

This law of transformation of components is traditionally used in mathematics as a
definition of a vector as a tensor of the first rank: if in any basis we have a triple of
values a;, which obey (1.6), then an invariant object @ is defined. The magnitude of
a vector is its only scalar invariant:

lal = Va-a = /aja; =,/aa. (1.7)
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Three dilferent methodologies for dealing with vectors and tensors find use in
the literature on continuum mechanics.

e A matrix (column of components) {a;} is often identified with the physical vector
itself. With a due extension to higher rank tensors, this attractive approach is fre-
quently used in the engineering literature and in computational applications, sec,
e.g.. [26, 74, 140]. Both simplicity and convenience vanish in the geometrically
nonlinear elasticity, when multiple oblique coordinate frames need to be consid-
ered simultaneously: the symbols ¢; on their own are just three scalars, which are
related (o the invariant vector @ only when the particular basis e; is known. The
most evident issue of the matrix notation is that each matrix of components shall
be “accompanied™ by a particular basis, which needs to be kept in mind.

e The so-called index (or coordinate) notation is used in continuum mechanics with
a high level of consistency [18, 56, 123, 139, 155]. Analysis in curvilinear coor-
dinates may lead to complicated expressions owing to the derivatives of the basis
vectors.

e The direct tensor calculus [40, 96, 101, 103, 154] operates with invariant objects
and is often opposed to the index notation. Fundamental equations of mechanics.
which are not related to any particular basis, shall advantageously be written in
an invariant form, but intermediate mathematical transformations may be difficult
to perform.

In the present book the strong sides of both the index and the direct notations are
combined in a manner proposed by Lurie [103]; see also Lebedev et al. [96]. Eliseev
[51] as well as the compact and comprehensive textbook by Danielson [40]. When
it comes to numerical analysis, then a particular coordinate frame is chosen and the
computations are performed using operations on matrices.

Tensors ol a higher rank are commonly introduced according to a definition,
similar to the one after (1.6). Thus, if in each basis we have nine values 7;; with the
transformation law

T,‘l' =ik QinTkn. (1.8)

then an invariant object T is defined. The values 7, are the components of this
tensor of the second rank. Thus if both @ and b are vectors (tensors of the first rank),
i.e.. if they fulfill (1.6). then it is easy to check that nine values ¢;; = a;b; follow
from (1.8). The tensor

c=ab (1.9)

is called a dyad: the symbol & is sometimes used to indicate the tensor (or dyadic)
product. A dyadic product of three vectors produces a triad, which is a tensor of the
third rank: A = abe. A;jx = aibjcy.

The identity tensor 1 has components 8;; in each Cartesian basis; (1.8) is fulfilled
because of (1.5). An invariant lincar mapping of a vector field into another one
a +— b defines a tensor of the second rank: in each basis we have ¢; = ¢jjbj, and the
coefficients ¢;; will obey (1.8).
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Four basic operations may be performed on tensors. The first one, which com-
bines summation and multiplication with a scalar, produces a linear combination of
tensors of the same rank:

c=ra+ub = Cij :A(l,‘j +[l/7,'j. (1.10)

The second operation is the rensor product: (1.9) may be generalized to tensors of
arbitrary rank, e.g..

aT="A = a;iTjr = Ajjk. (1.11)

The contraction is the third operation: summation over a pair of indices reduces the
rank of a tensor by two. Contraction within a second rank tensor gives its first scalar
invariant, which is called trace:

uwrT=T;,. (1.12)

Three invariant vectors can be produced by *A by a contraction with respect to
different pairs of indices:

Ajik =ax,  Aiji =bj, Ajjj=ci. (1.13)
The transposition of a second rank tensor
A=B" = A,‘j:Bj,‘ (1.14)

is a particular case of index permutation, which is the fourth basic operation.
The scalar product is a combination of the tensor product with the contraction:

a-T=b = uTjj=bj, a-T-b=qTjjb;, I-A=A. (1.15)
Examples with the double contraction are
A-B=A;jBji, 'Cre=t = Cijuen=rj. L -A=trA. (1.16)

In the western-world literature on mechanics the double contraction is often denoted
as 7 with a slightly different meaning. which is restricted to tensors of the second
rank:

A:B=A;B;j=A-B'. (1.17)

A tensor is related to its components:
T:T,-je,-ej, T,~j=e,~-T‘e.,-:
(1.18)
a-T=uaje;-Tjrejer =a;Tjid;jer =a;i Tige.

The vector product is a contraction with the Levi-Civita tensor “e:

|
axb=ba--3e. 3(:6,‘]/\'8,'8‘,‘81\-2 ijk:-_;(i—j)(j—'/\')(/\'—f). (1.19)
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The Levi-Civita symbols are closely related to the notion of a right-handed basis,
in whiche| x e;-e3=1:

3

€ijk=eixej-e, e xej=cjrer. IxI=ejejxejej=—"€ (1.20)
The rule of evelic permutation in a triple, or mixed scalar and vector product reads
a-bxc=c-axb; (1.21)

the order of operations is here uniquely defined.
For any symmetric second rank tensor T =T one can find such an orthonormal
basis v;. in which the components with different indices vanish:

T=ZA,~viv;: (1.22)
i

the rule of summation over a repeating index cannot be applied in this basis. The
eigenvectors v; and the eigenvalues A; are determined by the eigenvalue problem

T-v=iv = dey(T -1l =0. (1.23)

which involves the notion of a determinant of a second rank tensor. In Cartesian
components we deal with a common matrix formulation:

Tijvj=ivy = de{Tyj = Adyl=—-A"+ N2> —hi+ =0 (129

The coefficients of the cubic characteristic equation for the eigenvalues A are called
principal invariants of a tensor, and 7} (T) =tur'T, /3(T) =det T.

The eigenvalues are real numbers and the eigenvectors (which answer to dif-
ferent eigenvalues) are orthogonal provided that the tensor is symmetric. With the
representation (1.22) one can compute an arbitrary power of the tensor, e.g.,

2 2 2 1/2
T=T-T=Y Avvi. T72=> 1" v, (1.25)
i i
which allows to extend the notion of series expansions of analytic functions to the
case of tensorial arguments.

Any second rank tensor is a sum of its symmetric and antisymmetric parts:

. .1 | y
_ S A S _ T A_ r
T=T"+T". T =§(T+T ). T =§(T—T ) (1.26)
A skew-symmetric (or antisymmeltric) lensor
B=-B", Bij =—Bjj (1.27)

can be expressed through the associated vector b, which is related to its vector in-
variant B » (which is sometimes called “Gibbsian cross™ [96]):

|
B=bxI=1Ixb, b:—;Bx. By = Bjje; x e;j. (1.28)
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Indeed,
|
bxIl= —;B,:,-(e; X ej) X epeg

1 1
=—§Bij(ej6;k—e,&,—;\-)ek_—.i(B—BT):B. (1.29)
Here the known equality for a double vector product is applied:

ax(bxc)=ba-¢c—ca-b. (1.30)

Functions of tensor and vector arguments require an invariant definition: a map-
ping @ (T) exists in any basis as an equivalent function of the components @(7;;)
such that the value remains independent from the basis. An invariant scalar func-
tion of a second rank tensor depends only on its three invariants. A derivative of a
function is defined according to

0 por DD _ 09

d = — , —— = —ejej. 1.31)
aT aT oty ! (
A rotation tensor connects two bases:
e.=P-¢;, P=cle;=ajeje;; P-P =1 detP=1. (1.32)

According to Euler’s theorem, for any rotation we can find its axis k (which is a unit
vector, k- k = 1) and angle of rotation #, which provides an invariant form for the
rotation tensor [40, 103]:

P=Q(#,k)=1Icost + k x Isint + kk(l — cosf). (1.33)
The variation ol a rotation tensor is skew-symmetric:
S(P-PT)=0 = oP.PT=—(P-P") =30 x1 = sP=00xP. (1.34)

in which 66 is a small rotation vector. It is important to notice that the vector of
small rotation shall not be considered as a variation of a stand-alone vector 6. There
exist various finite rotation vectors, but none of them fulfills (1.34). Thus, it is easy
to check that 50 # §(k#).

Working with large deformations of solid bodies requires the notion of an obligue
basis. We consider three linear independent vectors ;. A reciprocal basis (or coba-
sis) @/ needs to be introduced according to

aj-a’ =35 (1.35)
Any vector can be represented with two types of components:

v=v'a;=via', v =v-a'. vi=v-qa;. (1.36)
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The summation is performed on one upper and one lower index, and free (non-
repeating) indices should be on the same level at both sides of an equality. The
components v; are denoted as covariant, and v’ as contravariant. A second rank
tensor has four different types of components:

T=Ta'a! =T"aja;=T"a'a;= Taia’,
A (1.37)
Tij=a;-T-a;j, T,.'j—_-a,--'l’-a’.
Mixed components of the identity tensor form an identity matrix, and the matrices
of its co- and contravariant components are mutually inverse:

I=gjja'a! =g'aja;j=a;a’ =ad'a;.
. ) (1.38)
ij i Y ijo . s
gij=aj-a;, g'=a-a. g’ =86. g'gix=4¢.
Components g;; or @'/ are often called “components of a metric tensor” and allow
raising and lowering the indices:

ai=gija’, a'=g'a;, vi=gij'. v'=g"v;. (1.39)

In contrast to (1.24), now the habitual expressions of invariants keep working only
with the matrices of mixed components:

detT =det{T;” } = det{T’,}. (1.40)

A point in the three-dimensional space is identified by its place, or position vector
r =ux;e;. A scalar field u(r) can be described in each Cartesian basis as a function
of three arguments u (x;). Consider its differential:

. ; 0 y
du = djudx; =dr-Vu, o= Fye V=e¢. (1.41)
0X;

Here the invariant differential operator V (Hamilton’s operator) produces an invari-
ant vector Vu, which is the gradient of the scalar field. The equality du = dr - Vu
shall be considered as a definition of V.

For a vector field v(r) the gradient is a tensor

gradv=Vv=e¢;div=e;e;div;, dv=dr-Vo. (1.42)

The trace and the vector invariant of Vv are correspondingly the divergence and the
curl (rotor) of the vector field:

dive=V.v=0iv;, rotv=V xv=¢;j;djvje. (1.43)

Integral theorems of the field theory [40, 145] play an important role in con-
tinuum mechanics. The divergence, or the Gauss—Ostrogradsky flux theorem states
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that the total flux of a vector (or tensor) field v through a closed surface 2 = dV
equals the total divergence of the field in the volume V within the surface:

fn-vd.Q: V-vdV; (1.44)
2 1%

n is the vector of outer unit normal.
The curl (or Stokes) theorem

f (dr-v):fn-vad.Q (1.45)
82 2

relates the flux of the curl of a field through a surface §2 and the circulation of the
field along the closed boundary contour d§2: the direction of the unit normal on
the surface n corresponds to the direction along the contour dr according to the
right-hand rule.

The invariant definition of the differential operator remains the same in the ar-
bitrary case of curvilinear coordinates q'. The position vector of an arbitrary point
is r(¢"). The vectors of derivatives r; = d;r conslitute a basis, and the differential
operator is written with the cobasis r':

V=r b, dr-Vu=r; ~rk(')kzl dt/i = diju dqi =du. (1.46)

The direct tensor calculus helps avoiding covariant and contravariant derivatives,
metric components, Christoffel symbols and other attributes of the index notation
[S6]. But intermediate transformations are often easier with components:

V.(rr)y=e;-di(rr)=e;-e;r +e;-re; =3r +r =4r; (1.47)

a computation with an arbitrary basis would lead to the same result, although the
effort is minimal with the Cartesian basis.

1.1.2 Procedure of Asymptotic Splitting

Dealing with complicated problems, one can often assume certain quantities to be
small. Formal asymptotic expansions in terms of a presumably small parameter help
finding dominating effects in the solution. Consider an equation

gu,A)=0 (1.48)
with A — 0. We seek the solution in the form of a series expansion in terms of A:
w= 1+t 2 (1.49)

Having substituted (1.49) into Eq. (1.48), we expand the left-hand side into series
with respect to the small parameter and equate the coefficients of like powers of



