L BNSRSE

TRANSPORT
PHENOMEN :

Second Edition

R.Byron Bird Warren E.Stewart
Edwin N.Lightfoot

Transport
Phe n 0 m e n a Second Edition

R.Byron Bird + Warren E. Stewart
Edwin N. Lightfoot

D 232s8baa



ERER e
&Y

Transport Phenomena

Second Edition

& R R

= R

R. Byron Bird
Warren E. Stewart
Edwin N. Lightfoot

@mgsaa&u



(R) HEF 039S

MBLEESAB (CIP) HiE

EEHR. %KX/ () A% (Bird, R.B.) %&. 2/ (BOFH) .
Jext: AeFET W HRAE, 2002.6

F & B L ;. Transport Phenomena

ISBN 7-5025-3267-6

1. & 0. A 0 OFR¥BFER-EM-EXOER¥E-TEF
B-#M-%3r V. TK124

o E R A E 54 CIP BB F (2002) %5 041294 8

R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot

Transport Phenomena, 2nd ed.

ISBN; 0-471-41077-2

Copyright © 2002 by John Wiley & Sons, Inc. All Rights Reserved.

AUTHORIZED REPRINT OF THE EDITION PUBLISHED BY JOHN
WILEY & SONS, INC., New York, Chichester, Weinheim, Singapore,
Brisbane, Toronto. No part of this book may be reproduced in any form
without the written permission of

@ John Wiley & Sons, Inc.

This reprint is for sale in the People’s Republic of China only and exclude
Hong Kong and Macau.

& B EWEA John Wiley & Sons, Inc. ABBi %, THREHEFEHE.
IEATRNBEERAREIZS: 01-2002-4040

Transport Phenomena
Second Edition
REAR
BAR

R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot

HiTHE: Gite TWH
Hmit: Hha
*
b2 Tk R AL R AT
(EETHHREFR 35 BRBEHE 100029
coRATERHE . (010) 64982530
http://www. cip. com. cn

Wi BrE AL T RAT IR 8
R =B R R iﬁ;ﬁpiﬁﬂ
ZHHREIT ®IT
FFA 850X 1168 FEK 1/16 EPFK 57

20024 8 B LR - 200246 8 LTI 1 KER

ISBN 7-5025-3267-6/G » 850
2 . 89.007C

e FELR

ZHMABRT. BN, BAE, FHRTHAFKER



B

il

MEPEMESEXARMBREAFTNNE, UBEENESHERATEIE]
AR, AEFHORBR, BT “BENEY REORERITRE, AR “+H” it
METEL B ERRIE. HULMERSERAR ML EEHERE, HERT
2000 [T TFRICHFRE 12 ZBN, WEFERHFTHENNR., EHE. ST
BENEMBEFRFATHS XHEM, & “HFEEmARL, mmttR., &
IR RIBER, KIERZ B S RALFBHE R BRI Pk iR, AR ST 200 18 A 14 68 A K
BHINEHITARME WIREE,

EXHENEST, 2ELERS¥RALAREARRPGE TERAEIEM R
HEBSIMBR. WARRAS LR, MEMNES5 IR, HRABES IR RENLER
kI8 A A L E AR 2 TREAR LR X B F B ER SR —.
HEHER “CIRBWAAERTRERBFARTRARENHR S LR THHAL “f
TEREVABAATEFER, BENE, BEHTENBEIARARENR RS LR JH
HA “2EABUZIBRILZLXLHFEHERIRRE” WHEFMIRT, AFETLER
HEEIRS T 5 BHE RS ENEM TR,

HIRH AR KRB A RS REESFIFE, BT ESH IR RN EIES R
SFERBTRENR, @ET - RMEFALEROAAEHEE. AL KEENE
ABBENERFFUET "BENEREETFNERR”, MEIAMEARERB SR
T, MBEMAERBETHEETN, RGRERTIIH. BNSHEIFEZELL
BB TR, ANERLTRPGIHERR, LERMREENMLE MM 3R
.

DEAEA T2 S A Ry R, T RSB 5 EEY Rk
¥, AE¥TBRE5TIZ. KERE5TIR. £ PBRASIE. HRBE5TE. WA TR
Fh0, MNBEESEHTIRE. ANLEERTLEMKNIHOERARNZ S

AEZE ., BiFHRENSMOER S, EREIIEMHENEE, REH
BER, BUREKR, EARBKER, EFHHAA, BERITERE, RROKRE,
i A HERS .

TR “ESNEBEE” RIVEMEE R ZER, FOIA VRS L Tolk th At
HEEHEHTBNE S, ERRE MBI EARR THEER,

PEAFRRE, REAPHR
& B3R
2002 # 8 A



Preface

While momentum, heat, and mass transfer developed independently as branches of
classical physics long ago, their unified study has found its place as one of the funda-
mental engineering sciences. This development, in turn, less than half a century old, con-
tinues to grow and to find applications in new fields such as biotechnology,
microelectronics, nanotechnology, and polymer science.

Evolution of transport phenomena has been so rapid and extensive that complete
coverage is not possible. While-we have included many representative examples, our
main emphasis has, of necessity, been on the fundamental aspects of this field. More-
over, we have found in discussions with colleagues that transport phenomena is taught
in a variety of ways and at several different levels. Enough material has been included
for two courses, one introductory and one advanced. The elementary course, in turn, can
be divided into one course on momentum transfer, and another on heat and mass trans-
fer, thus providing more opportunity to demonstrate the utility of this material in practi-
cal applications. Designation of some sections as optional (0) and other as advanced (@)
may be helpful to students and instructors.

Long regarded as a rather mathematical subject, transport phenomena is most impor-
tant for its physical significance. The essence of this subject is the careful and compact
statement of the conservation principles, along with the flux expressions, with emphasis
on the similarities and differences among the three transport processes considered. Often,
specialization to the boundary conditions and the physical properties in a specific prob-
lem can provide useful insight with minimal effort. Nevertheless, the language of trans-
port phenomena is mathematics, and in this textbook we have assumed familiarity with
ordinary differential equations and elementary vector analysis. We introduce the use of
partial differential equations with sufficient explanation that the interested student can
master the material presented. Numerical techniques are deferred, in spite of their obvi-
ous importance, in order to concentrate on fundamental understanding.

Citations to the published literature are emphasized throughout, both to place trans-
port phenomena in its proper historical context and to lead the reader into further exten-
sions of fundamentals and to applications. We have been particularly anxious to
introduce the pioneers to whom we owe so much, and from whom we can still draw
useful inspiration. These were human beings not so different from ourselves, and per-
haps some of our readers will be inspired to make similar contributions.

Obviously both the needs of our readers and the tools available to them have
changed greatly since the first edition was written over forty years ago. We have made a
serious effort to bring our text up to date, within the limits of space and our abilities, and
we have tried to anticipate further developments. Major changes from the first edition
include:

e transport properties of two-phase systems

« use of “combined fluxes” to set up shell balances and equations of change

angular momentum conservation and its consequences

complete derivation of the mechanical energy balance

¢ expanded treatment of boundary-layer theory

Taylor dispersion
* improved discussions of turbulent transport

iii
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* Fourier analysis of turbulent transport at high Pr or Sc

» more on heat and mass transfer coefficients

* enlarged discussions of dimensional analysis and scaling

e matrix methods for multicomponent mass transfer

* jonic systems, membrane separations, and porous media

¢ the relation between the Boltzmann equation and the continuum equations

e use of the “Q+W"” convention in energy discussions, in conformity with the lead-
ing textbooks in physics and physical chemistry

However, it is always the youngest generation of professionals who see the future most
clearly, and who must build on their imperfect inheritance.

Much remains to be done, but the utility of transport phenomena can be expected to
increase rather than diminish. Each of the exciting new technologies blossoming around
us is governed, at the detailed level of interest, by the conservation laws and flux expres-
sions, together with information on the transport coefficients. Adapting the problem for-
mulations and solution techniques for these new areas will undoubtedly keep engineers
busy for a long time, and we can only hope that we have provided a useful base from
which to start.

Each new book depends for its success on many more individuals than those whose
names appear on the title page. The most obvious debt is certainly to the hard-working
and gifted students who have collectively taught us much more than we have taught
them. In addition, the professors who reviewed the manuscript deserve special thanks
for their numerous corrections and insightful comments: Yu-Ling Cheng (University of
Toronto), Michael D. Graham (University of Wisconsin), Susan J. Muller (University of
California-Berkeley), William B. Russel (Princeton University), Jay D. Schieber (Illinois
Institute of Technology), and John F. Wendt (Von Karmén Institute for Fluid Dynamics).
However, at a deeper level, we have benefited from the departmental structure and tra-
ditions provided by our elders here in Madison. Foremost among these was Olaf An-
dreas Hougen, and it is to his memory that this edition is dedicated.

Madison, Wisconsin R.B.B.
W.E.S.
E.N.L.



¢ ¢ ¢ AL GEBRAIC OPERATIONS FOR VECTORS AND
TENSORS IN CARTESIAN COORDINATES

(s is a scalar; v and w are vectors; T is a tensor; dot or cross operations enclosed
within parentheses are scalars, those enclosed in brackets are vectors)

(v-w) = v, + ow, + vw, = (W-V)

[v X wl, = v,w, — vw, = —[w X v,
v X wl], = v,w, —v,w, = —[w X v],
[v X wl, =v,w, —vw, = —[w X V],
[T vl = 7,0, + 0, + T, [vetl, = 0,7 + 07 + 0T
[v-v], = 7,0, + 70, + 1,0, [v-7l, = v,7y + U7, + 0.7y
[7:vl, = 1,0, + 7,0, + 7.0, v-7l, =01, + 0,7, + 0.7,

Note: The above operations may be generalized to cylindrical coordinates by replacing
(x, y, 2) by (r, 8, 2), and to spherical coordinates by replacing (x, y, z) by (7, 9, b).
Descriptions of curvilinear coordinates are given in Figures 1.2-2, A.6-1, A.8-1, and
A8-2.

e ¢ e DIFFERENTIAL OPERATIONS FOR SCALARS, VECTORS, AND
TENSORS IN CARTESIAN COORDINATES

—9s _9s _ds
_dv, 9y _dv,  dv, _dv, _av,
Vxvh=5 -5 W= 5% k=53
_ v 9 v, _ . Js ds Js
(v V)“o?x+c?y+é'z (v VS)—v‘&x+vyo7y+vzaz

2 2 2
VZSE(V'VS)=i§i+a—%+é%
dx~  dy° 0z



2 2 2
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axt eyt 97
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[v-Vv], = Uyt vyW + v,
_ o) ) v,
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vw) o) v,
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av dv av
y y y
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Note: the differential operations may not be simply generalized to curvilinear coordi-

nates; see Tables A.7-2 and A.7-3.



* ¢ s MOLECULAR FLUX EXPRESSIONS (SEE APPENDIX B.1, B.2, AND B.3)

Momentum (p = constant, Newtonian fluid): 5
U; .
R MU R O Ry

ax;  0x;
Heat (pure fluid only):
S i
q kVT or g,=—k Ix
Mass (for a binary mixture of A and B):
. ) dw
ja= —PDapVy or  ja= —pDap *Or,}‘/_l

e ¢ « CONVECTED FLUX EXPRESSIONS (SEE §§1.7,9.7, 17.7)

Momentum:

pvv or pUv;
Energy:

p(U + 2dv or  pU+ 2,
Mass:

PW 4V or PWA;

¢ « « COMBINED FLUX EXPRESSIONS

Momentum:
b=pvwtm=pvw +pd+7T (Eq.1.7-2)
Energy:
e =p( + Av + q+ [m- vl (Eq. 9.8-5)
= p(H + 3Av + q + [7-v] (Eq. 9.8-6)
Mass:
n, = pwuv + j,u ' (Eq. 17.8-1)

Note: The quantity [ - v] is the molecular work flux (see §9.8), and w = pd + 7 (see
Table 1.2-21). All fluxes obey the same sign convention: they are positive when the
entity being transported is moving from the negative side of a surface to the positive
side.



¢ ¢ ¢« EQUATIONS OF CHANGE IN TERMS OF THE COMBINED FLUXES

These equations are valid only for systems in which gravity is the only external

force. More information may be found in §19.2.

Momentum:
:%pv = —[V-&] + pg (Eq. 3.2-8)
Energy:
tp(U +39) =—(V-e) +p(v-g (Eq. 11.1-6)
Mass
% pws= —(Vom,) + 74 (Eq. 19.1-6)
* ¢« s EQUATIONS OF CHANGE (SPECIAL FORMS)
Momentum (for Newtonian fluids with constant p and u): (8B.6)
D
ﬁ’:,,(at +[v- Vv])— ~Vp + uVv + pg
Energy (for Newtonian fluids with constant p and k): (§B.9)
c,,%f—pc< + (- VD) KV2T + u®,
Mass (for binary mixtures of A and B with constant p®p): (8B.11)

DwA 8wA
PDr = Plat

+ (v VO)A)) = p@ABVZwA + Ya

« ¢« e DIMENSIONLESS GROUPS

(I, and v, are a characteristic length and a characteristic velocity, respectively)

Re = Iovop/” Pr = épl.b/k SC = [.L/pgbAB
Ra = GrPr Gr = gBRAT/v? Gr, = g{BAw,/v?
Nu = hly/k Pé = RePr Pé,z = ReSc

Sh = klo/D as ju = Nu/RePr'/? jo = Sh/ReSc'/?
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