‘pichard
spencer-Smith

LOGIC AND PROLOG

Richard Spencer-Smith

=% HARVESTER
=2E WHEATSHEAF

New York London Toronto Sydney Tokyo Singapore

First published 1991 by

Harvester Wheatsheaf

66 Wood Lane End, Hemel Hempstead
Hertfordshire HP2 4RG

A division of

Simon & Schuster International Group

© Harvester Wheatsheaf, 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

Printed in Great Britain at the
University Press, Cambridge

British Library Cataloguing in Publication Data

Spencer-Smith, Dr Richard
Logic and Prolog
1. Prolog Programming Language
1. Title
005.13

ISBN 0-7450-1022-9

1 2 3 45 9 94 93 92 91

Preface

In the production of this book, I owe a debt of gratitude in many
quarters. First and foremost, to the University Grants Committee,
without whose financial support it would not have been possible.
The U.G.C, through its Computers in Teaching Initiative, provided
funding for the development of a course combining Logic with
Prolog.

In help with Prolog, I am particularly indebted to two
people: Steve Torrance and Don Smith. I have been fortunate
enough to have Steve as a close friend, and collaborator on other
projects. Steve has shown me many things about Prolog, especially
in relation to second order programming and production systems. He
has been generous in supplying ideas for the book (e.g. the basis of
Appendix 3), and has made many valuable comments on earlier
drafts. I have also benefited enormously from the expert eye of Don
Smith, who is responsible for the tail recursive definition of
cumulative interest in section 5.2, and for a backwards chaining
system which gave me the idea for the illustrative expert system
of section 5.4. Amongst many who have given me help and
encouragement, I would especially like to thank Ruth Crocket, Tony
Drapkin, David Over and Alan Lacey for their comments.

I would also like to thank all those students at London, and
latterly at Middlesex, who have suffered my various attempts to
get this material right. On occasions they have shown me more
elegant solutions than my own - both proofs and programs. Their

vii

viii Preface

solutions than my own - both proofs and programs. Their criticisms
have been the most valuable - of my mistakes, and
incomprehensible formulations.

I have produced an Instructor's Manual to accompany the
text. This arose initially out of my own need for a record of answers
when marking - including acceptable alternative solutions to
exercises, and common mistakes. Its development was further
encouraged when I had postgraduate assistants to help with
marking. Since many lecturers will have such assistance, I believe
it is useful to make this material more widely available - but not so
accessible as simply appearing in the back of the book. Any
lecturer can obtain a free copy of this Manual from the publishers.

London, 1990.

Contents

Preface

.. vii
Chapter 1 Introduietinn .o vusemmmnmrossssssommsnns vors 1
1.1 BackpTotnd t0 0BT .. coas vmseennsiionissiomsssion st eis vogis s goies 1
1.2 Background t0:Prolog: .. coxmismss sonssms suve vorsssacusuesismsmzioss 3
1.3 Logic and Prolog............cuuuiiiuiieiiiiiiiiiieee e 8
Chapter 2 Logic: the foundation of analysis.......... 13
2.1 DEUCHUNE o m sivrern s ssasnssovescnmasionmans smus s sednnosm o vson siass s 13
2.2 LOgiCal. SEAliIS: «i . civie cosmmemamnmmmsmsmmmse mossmus no s st bt e s S5t 28
2.3 Conditions and conditionals......;wsusmmsmmmsomcns 39
2.4 Names and predicates................cceevivieriieniereeeiiiineenannn. 52
2.5 Quantifier and variable............c.cccooiiiviiiiiiiiiiin 62
Chapter 3 Prolog: analysis in action......................... 75
3.1 Beginning: PrOlOF : cocvmsunommossomvosmsossessonvors onsaonesinnss 73
3.2 Backtracking; negation; errors.............ccccccevueiiiiiinnnnn. 86
3.3 Structuring: information:: . s:umumsesmsmmsrnneas e 102

vi Contents

3.4 LSS : o s scierisstivnns wos snsuinssnss soslans shimas ap Ao o AR SRS G0 S Sl 113
3.5 Using NUMBEES: . cosususnrinsisnsassansonmmmss isssnbmsses soevsssssssiass 125
3.6 IO UCING TECTTSION . ..ce scsesumen e s sanbit uneanmannassnavumss sates 138
Chapter 4 Logic: the art of deduction....................... 157
4.1 REASOIMINE . cvv- v sranssnnnsios seiinasasss aoses aosnwvs yhgass Fomman s 157
4.2 Assumptions; strategy..........cceccciiiiiiiiiiiiiiiiiiieeeieinne 169
4.3 ReasONING TITHNOT : i5s cerioss crnsssnvsses yonssss sea s 6T anmentmas wsins 182
4.4 GeNeTalTZatlONS sssosms oovi ciivs ssmumnrss sas sresessin saiotsn soassissse 194
4.5 Reasoning with existence...........ccccccociiiiiiiniinninennn. 206
4.6 Burthefr tOPies::imemisiimusmssmsssmneesonss iasssssis snacase 224
Chapter 5 Prolog: logic plus control......................... 248
5.1 EiSts Qned SeTs:.......conn iz iicsshmmss 59 mras smossaanssmsresanssnessins 248
5.2 Recursion:aind CONEIOL s o sy vussonss st sa5655 ammmmmmpsass s 267
5.3 Operators; truth and: Proof «:.ccwrsmmsmsessnmsssos smessss 298
54 ENGINGS Of INFETENCE....... ccovvvvos poiesoisionisiies ssnsennmensas s cosgis 320
55 Towards natiral 1anguage . swesossssurisss ssssasrisiamnase 344
DD DRI o ons xvassssmoini s son st QAR SRR s ko 371

Chapter 1
Introduction

1.1 Background to logic

What exactly is logic? Some will say that logic is centrally
concerned with defining the notion of proof - 2n account of the
inferential transformations that can lead to the derivation of a
conclusion from a set of assumptions. Others may say that logical
truth, and related notions involving meaning and truth, are central.
Others may say that the definition of consistency is what logic is
really all about. All of these concerns are important, but it is
misleading to suggest that one is more fundamental than the others.
One could equally well say that logic is essentially concerned with
characterizing a few special expressions, known as the logical
constants. It studies them from two angles: what they mean, and
what inferential properties they have. This dual characterization
of the logical constants only makes sense in the context of a general
conception of meaning and of proof - that is, a context which includes
those general relationships of truth, proof, consistency, etc.

Logic is relevant to any area of thinking or talking where
the logical constants are used. Since these words are of the highest
generality, that is really all areas. From theoretical physics to
everyday talk of mundane matters, we make assertions and reason
with sentences employing these words. This fact is sometimes
expressed in the thesis that logic is topic-neutral; it applies to all
topics, and is partial towards none. But with some fields of inquiry
logic enjoys a special bond. With linguistics there is a common
interest in the structure of ordinary language, and the extent to
which that is a logical structure. Psychologists are concerned with
the nature of cognition; reasoning (however well or badly we
ordinarily do it) is a cognitive process of central importance. To a

1

2 Logic and Prolog

logical structure. Psychologists are concerned with the nature of
cognition; reasoning (however well or badly we ordinarily do it) is a
cognitive process of central importance. To a mathematician, symbolic
logic is a branch of the subject like any other. Logical systems can be
the object of mathematical investigation, and some of the most
important theorems this century have concerned what can and cannot
be done within them.

Computer science uses logic at its lowest level, in the switching
of its circuitry, and at the highest level, in logic programming
languages such as Prolog. However, with philosophy the link is at its
most venerable. Philosophy gave birth to logic as a discipline, and
still accords it a central place. Philosophy needs logic as a tool for the
analysis of concepts and problems, and because its principal mode of
demonstration is reasoned argument. Moreover, concepts such as truth,
necessity and existence require both philosophical and formal
investigation. What this list of disciplines indicates is that there are
many different facets to the study and application of modern logic - so
much so that it is impossible to begin to cover them all in a single work.
This book is concerned with the use of logic, and especially its
application in these last two subject areas.

Rather than launch straight in to the formalities, I will begin
with some informal reasoning tasks. There is more to these exercises
than appears at first sight, and we shall return to them in due course.
You may have already encountered variants of the problems before.
The kind I shall now describe are developed most fully in some books
by Raymond Smullyan. In tribute to Smullyan's formulation, I shall
call these knights and knaves problems. A knight is honest, in this
very strict sense: everything he says is true. Knaves are
correspondingly dishonest: anything a knave says is false. There is
also the possibility of encountering a normal: someone who, like normal
people, sometimes speaks truly, sometimes falsely. There is a group of
islands notorious for these characters. Some islands are populated only
by knaves, others by knights, while some may even contain normals.
People occasionally get washed up amongst these islands, and the
locals are wont to have a little fun with them by venturing information
about themselves - or disinformation, as the case may be. We shall
assume in what follows that we are on the island of knights and
knaves, i.e. that we will encounter both of these types, but no normals.
(This is only an assumption, and may need to be revised later.)

A typical case is this. We come across two of the locals - let's
call them 'a" and 'b'. a tells us that at least one of them is a knave. So
the problem is: what, if anything, can we deduce about these

Introduction 3

characters, from the information that a said this? Before proceeding
to my account of the matter, you may like to stop and work out the
solution for yourself.

Well, here's my version:

a says that at least one of a and b is a knave.

Suppose that a is a knave.

Then anything he says is false.

So it's false that at least one of them is a knave.

In other words, neither a nor b is a knave.

But then, in particular, a is not a knave.

This contradicts our initial hypothesis - so he can't be a knave.
If every islander is either knight or knave, a must be a knight.
If he's a knight, then what he said is true: at least one of them is a
knave.

If at least one of them is a knave, and it isn't a, it must be b.

So we conclude: a is a knight and b a knave.

This sort of problem is in a sense rather artificial. In the
present context this is an advantage, because it means that they are
very self-contained. The assumptions which are relevant to the
problem are few. A problem involving a more realistic example would
tend to get us side-tracked into questions about what assumptions were
correct and appropriate. With an artificial example we can
concentrate on the reasoning, not the assumptions. It's better if there
are a small number which can be agreed upon, for what's important is
how one reasons from those assumptions. Many of the key words in the
little specimen of reasoning above - 'suppose’, 'if', 'not', 'every’, 'and’,
'so', 'true’, 'or', 'false’ - might occur in any piece of reasoning. They are
the logical hinges on which an argument can turn, no matter what its
topic. These are the sorts of words which logic is concerned to
characterize, and thus our subject matter in what follows.

1.2 Background to Prolog

In order to do anything at all, a machine needs to be told what to do -
either through some form of external control, as when operated by a
person, or by containing within it a sequence of instructions which
direct it - a program. A machine might, for instance, compute the
inference 'Socrates is human. Therefore: Socrates is mortal'. It can't do
this without being programmed in some way to do so, e.g. by containing
the instruction 'To prove that something mortal, show that it is

-+ Logic and Prolog

human'. For any computing machine it is customary to distinguish
between its software, the instructions and information which guide it,
and its hardware, the collection of devices which is the physical
machine. The two are mutually independent. The same set of
instructions may be physically embodied in totally different ways, in
different machines. And the same machine may be able to follow many
different kinds of instructions.

Instructions need to be formulated in a language. There are
many computer languages, and different ones are suited to different
tasks. They can be graded from ease of comprehension to humans
(high-level), to ease of comprehension to computers (low-level). For
every computer there is a fundamental language, its machine code, the
instructions of which correspond to the basic operations which it can
perform (looking at the number stored in a certain memory location,
say). At the other end of the scale are high-level languages like
Prolog, which are relatively close to natural language. If a computer is
running a Prolog program, in addition to the low-level description of
what is going on, in machine code terms, there will also be a high-
level description of what it is doing (drawing a certain inference, for
example.).

A computer file can be a program, e.g. which tells the computer
how to perform some function, such as word processing. Or a file could
contain the data which such a program manipulates, e.g. the text of a
document created by someone using the word processor. Some tasks
which computers perform - airline bookings, say - require many
particular items of data (flight details, passenger reservations, etc.) to
be recorded in a very structured way, so that information can be
accessed and manipulated in certain set ways - a database. So a file
might consist of a database of information. Or a file might contain the
instructions which make it possible for the machine to be programmed
in a particular language. Such a file would need to contain some means
of translating a program written in that language, a source program,
into the machine code of the computer, an object program. A file can be
stored on whatever storage medium the machine uses - or by being
written down on a piece of paper. Since a file is essentially a quantity
of information, files are capable in principle of being transferred from
one machine to another, e.g. over a telephone line.

One can distinguish two ways of approaching a programming
task, two different programming styles: the imperative (or
procedural), and the descriptive (or declarative). The imperative
approach is epitomized by the question: how am I going to get the
computer to do this task - what sequence of instructions should I give it?

Introduction 5

This approach fits naturally with an imperative programming
language - one in which many of the primitive expressions are
commands. Most traditional computer languages have been
imperative. The descriptive approach is characterized by a different
attitude: how can I analyse and describe the matter in hand - the
description to be in a form which the computer can use? The difference
between the two styles can be illustrated by the kind of conditionals
typically found in the corresponding programming languages. In an
imperative language, they are like the conditional imperatives of
ordinary language (e.g. 'If it's raining, put your coat on’). In a
descriptive language, conditionals are like ordinary declarative
conditionals (e.g. 'If it's raining, the pavements will be wet).

The logic programming language Prolog is typical of a
descriptive language. However, even a descriptive language like
Prolog has some imperative features. (In order to get the computer to
display messages, for instance, we need something which is in effect an
instruction to print.) This is why I prefer to draw the contrast
primarily in terms of programming styles, rather than languages.
Prolog counts as a descriptive language because it is suited to the
descriptive attitude. Programming in it is an extension of our
techniques for logical analysis and description. A problem is tackled
by writing an analysis of it as a set of sentences in Prolog (a version of
first order logic), which the machine can use like a set of axioms, to
prove conclusions. A program is used not by telling it to run, but by
putting questions to it - can a particular conclusion be derived? The
overall approach, then, is one of description and deduction. But since
we also have to pay attention to controlling the way deductions are
carried out, and to producing side-effects like messages being printed
out, there will usually be a procedural element too.

There is one other general contrast which is worth drawing -
between two ways computers can be set up for programming. These
ways are independent of the kind of language being used; rather, they
are environments in which programming can take place. I shall say
that the distinction is between prompt-based systems, and windows-
based systems. The point of making this contrast is merely to indicate
that there are different ways of entering, testing and changing a
program, for it has a slight impact on the syntax of the language being
used. A prompt-based system essentially allows just one point of
contact with the language: the prompt. A multi-windows environment
presents a more flexible interface to the user. Being easier to use, they
generally require more sophisticated hardware on which to run. The
distinction is neither exclusive (combinations of the two are possible)

6 Logic and Prolog

nor exhaustive (in the future, one might be able to give instructions to a
computer by speaking to it in ordinary language).

The standard prompt in Edinburgh Prolog is the combination
'?-'. When the prompt shows, one may interact with Prolog - telling it
to add a certain sentence to its logical database, for instance, or asking
it a question. Here is a short illustration of an interaction on a prompt
based system:

2- listing.

mortal(X) :- human(X) .
human(socrates).

yes

?- mortal(socrates).
yes

28

On the first of these lines, Prolog is told to show everything in its
current program - to list all the sentences. There are just two: any X is
mortal if it is human, and: Socrates is human. After these are
displayed, the prompt reappears, and this time Prolog is queried: is it
deducible that Socrates is mortal? Prolog makes the inference, gives
the answer, and then returns the prompt, ready for the next interaction.

A multi-window environment is easier to use, because it can
separate out some of these different aspects of programming into
different windows. Here is roughly the same interaction in a windows
system:

Introduction 7

Program
mortal(X) :- human(X) .
human(socrates) .
i Query N
?-| mortal(socrates)
Solutions ... e Oupu =
[(one] [lau_]
YES

In the Program window at the top left, the program can be written - and
edited like an ordinary piece of text on a word processor. This makes
editing far simpler than having laboriously to enter edit instructions
through the prompt. The middle window allows queries to be entered.
The Output window, at the front, is where the solution to the query is
displayed.

Lecturers at a university or college are likely to have access to
a computer advisory service; those wishing to try out Prolog for the
first time should consult the service as to whether their institution
already has a licence for some version of Prolog; if not, whether it can
be provided for the available machines; if not, which combination of
hardware and software they would recommend. Those without access
to a computer advisory could try looking in computer magazines for
reviews of, and adverts for, implementations of Prolog; bear in mind
that most commercial software (and hardware) is available to
educational users at a substantial discount. It may be possible to obtain
a demonstration version of the software for evaluation. In view of the
above, one point to look out for is general ease of use - it's important
that, for example, the business of editing doesn't get in the way of the
more important task of working out what needs to be edited. Another

8 Logic and Prolog

valuable feature in an educational context is the provision of detailed
and intelligible error messages.

For those used only to teaching pure logic, the value of 'hands
on' classes or workshops cannot be stressed enough; students need not
only to have the general system demonstrated while they are sitting
at a computer terminal, they also need practical sessions in Prolog
programming and debugging. If the students are new to computers - or
just new to the machines they will be using for Prolog - it is advisable
to spend some time getting acquainted with the general environment
before launching into Prolog. In particular, one should know how to
edit, save, load and print out a file. A suitable exercise would be to use
a word processing program with the same kind of interface as the
Prolog implementation, to prepare some text - a letter, or an essay - and
print it out.

1.3 Logic and Prolog

Many students of both logic and Prolog have great difficulty mastering
the abstract concepts and techniques of these two subjects. This book
attempts to explain these abstract concepts in an intuitively
comprehensible way. It is thus aimed especially at those who are not
well-versed in the use of formal or symbolic languages (unlike for
example mathematicians and computer scientists) - students of
philosophy, or cognitive science, or anyone studying Prolog as a first
computer language. Despite their theoretical affinity, logic and
Prolog are often not studied together. Nevertheless, studying one will
enhance the learning of the other. The book is intended to provide a
comprehensive grounding in both subjects, taking students from
introductory level through to advanced features of Prolog, including
some basic applications to artificial intelligence (A.L). The
relationship between logic and Prolog is developed from a practical,
rather than theoretical perspective.

One component of philosophy, ancient and modern, is the
analysis of concepts. Frege, the discoverer of modern formal logic,
called it a Begriffsschrift, a concept notation. The analysis of a
concept might involve attempting to get straight the conditions
necessary and sufficient for its correct application, or seeing where such
an attempt fails. For a simple example, see the analysis of knowledge,
exercise 2.4, D. An analysis of knowledge involves a theory of the kind
of thing which knowledge is, and may issue in a proposed definition of
that concept. Logic serves the analysis and statement of such
definitions and theories, making their content precise, e.g. by laying

Introduction 9

bare the different readings of an ambiguous formulation, or showing
exactly where qualifications or amendments are needed. One could say
that philosophers have been using logic as a knowledge representation
language longer than anyone. Analysis is one of the most important
applications of logic in modern philosophy, yet most courses in logic do
not seriously address it. At best they contain exercises in formalizing
English sentences into logical formulae. But real problems do not come
already packaged into a neat set of sentences; they are specified
informally, and the difficult task is to produce a precise analysis from
that informal description.

I have tried to design a number of logic exercises which give
the student practice and confidence in applying logic to the analysis of
problems. But problem solving is one area where logic programming
has a great deal to offer the teaching of logic. In Prolog, you can work
right through from an informal specification of a problem to a working
analysis of it. You are not presented with a number of statements in
English to translate into logical notation - getting a propositional
description is half (or maybe much more) of the problem. You have to
decide what the basic facts are, and what vocabulary you should use to
describe them with, and then work out how to define other
relationships in terms of that vocabulary - define the logical
connections between these concepts. The computer makes the process of
logical analysis interactive, providing very direct feedback in a way
one simply cannot get if the sentences are just written down on paper. A
student can see his or her logical definitions at work, and can get an
idea from the answers of whether for example a defining condition
needs to be added to or altered. Does the program prove fewer
consequences than were intended - or more? Perhaps it works partially,
answering some queries correctly but not others. One can experiment
with it, and see the consequences of altering it in different ways.

Other examples of the pedagogical symbiosis between logic
and Prolog are worth citing. Prolog can help to bring to life some
aspects of the language of logic, for instance by showing that a
variable is, precisely, variable: a term which can take various objects
as its values. Recursion is another example. In elementary logic
students learn techniques which are recursive, such as truth tables and
proofs, without being explicitly introduced to the concept of recursion.
By learning recursive programming in Prolog, they can come to a deeper
understanding of these elementary recursions. Search, which is one of
the major topics in A.L, provides another important example. By
seeing proof construction as a search problem we can bring to bear some
of the understanding of search developed in A.IL, to provide students

10 Logic and Prolog

with heuristics and strategies for reasoning. As a final example of the
way Prolog can help with logic, I would mention the most important
properties which can attributed to a logical system: that it be
consistent (that it does not entail anything unwanted), and complete
(that it does entail everything it should). I have not attempted to
state proofs of any of the fundamental results involving these concepts,
e.g. the consistency and completeness of propositional logic - material
which, I believe, is neither necessary nor comprehensible to the
average beginner. Rather, the approach here is practical: a student
can get a much firmer grasp of what these properties really amount to
by setting up and interpreting a small logical system of their own. The
expert system sketched in sections 5.3 and 5.4 is just that: a simple
logical system interpreted within Prolog.

Benefits also accrue in the other direction. At the elementary
level, by providing students with a grounding in logic before
attempting to program with logic, we can avoid some of the problems of
adjusting to the declarative style of thinking typically encountered by
those who come straight to Prolog from the traditional, procedural
style of programming. Secondly, studying how proofs work (especially
inferences involving Modus Ponens, Reductio, Disjunctive Syllogism and
Universal Instantiation), helps to make clear what Prolog is actually
doing when it solves a query - namely, performing a mechanical
derivation according to such rules. As a final example: use of the more
explicit notation of logic can help to clarify some of the more advanced
features of Prolog - the precise force of such constructs as not, forall and
setof.

Given all these potential benefits of studying the two subjects
together, the question naturally arises as to how best they can be
combined. Already they have grown apart in notation and
terminology. This poses a dilemma: adopt a consistent style
throughout, or mix the two? I have taken the latter course, since to do
otherwise would be unfair to one or the other discipline, and it is my
intention that this course should provide students with a firm
grounding in both. There is a need for each community of practitioners
to stay in touch with the other: for logicians to know about this most
important area of application, and for logic programmers to know about
the theoretical roots of their practice. Since it would be confusing to
switch back and forth between the two disciplines too often, I have
grouped them into two chapters apiece.

Texts and courses in logic tend to fall into two sorts. Those in
informal logic look at real examples of reasoning, both valid and
fallacious, but lack the rigour and generality of formal logic. Those in

