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View of the dam and rock face

Plate 2 Analysis of an arch dam in China
An early three dimensional analysis (1970). Analysis by OCZ and Cedric Taylor, Department of Civil Engineering,
University of Wales Swansea.



(a) Stator slots have been ‘skewed’ by one slot pitch in order to reduce cogging torque, i.e. torque associated with
the alignment and misalignment of rotor poles and stator teeth.

(b) Contours and vectors that indicate the strength and direction of the magnetic fields in the stator core back.

Plate 3 4-pole generator

Courtesy of Mr. William Trowbridge, Vector Fields, Kidlington, Oxfordshire. Source: J. Simkin and C.W. Trowbridge
‘Three dimensional nonlinear electromagnetic field computations, using scalar potentials’, Proc. IEE, 127, Pt. B,
No. 6, Nov. 1980.



‘8661 ‘VLL-LSL ‘261 “Bu3 Yoy ‘ddy Yoy ‘dwo) ‘senem onsubewonoele jo Buuieneds Buinjoaul swaiqoid Jo uonenuwis
au) Joy Buissaooid |ojeied, ‘|IHBYIBM d ‘N PUB UBSSEH "0 'seq00ig T d ‘UeBIop ") :90in0S "easuems sajep Jo Ausieaun ‘Bunissuibul a0 jo uewiredeq ‘uebiow usy ‘joid jo Asaunod

yesoure Bunonpuoo Apospad e Ag snem oisubewosiosis aueld e jo Bulieness v ajeld




Preface

It is thirty-eight years since the The Finite Element Method in Structural and Continuum
Mechanics was first published. This book, which was the first dealing with the finite
element method, provided the basis from which many further developments occurred. The
expanding research and field of application of finite elements led to the second edition in
1971, the third in 1977, the fourth as two volumes in 1989 and 1991 and the fifth as three
volumes in 2000. The size of each of these editions expanded géomctﬁcallyv (from 272
pages in 1967 to the fifth edition of 1482 pages). This was necessary to do justice to a
rapidly expanding field of professional application and research. Even so, much filtering
of the contents was necessary to keep these editions within reasonable bounds.

In the present edition we have decided not to pursue the course of having three contiguous
volumes but rather we treat the whole work as an assembly of three separate works, each
one capable of being used without the others and each one appealing perhaps to a different
audience. Though naturally we recommend the use of the whole ensemble to people wishing
to devote much of their time and study to the finite element method.

In particular the first volume which was entitled The Finite Element Method: The Basis
is now renamed The Finite Element Method: Its Basis and Fundamentals. This volume
has been considerably reorganized from the previous one and is now, we believe, better
suited for teaching fundamentals of the finite element method. The sequence of chapters
has been somewhat altered and several examples of worked problems have been added to
the text. A set of problems to be worked out by students has also been provided.

In addition to its previous content this book has been considerably enlarged by including
more emphasis on use of higher order shape functions in formulation of problems and a
new chapter devoted to the subject of automatic mesh generation. A beginner in the finite
element field will find very rapidly that much of the work of solving problems consists of
preparing a suitable mesh to deal with the whole problem and as the size of computers has
seemed to increase without limits the size of problems capable of being dealt with is also
increasing. Thus, meshes containing sometimes more than several million nodes have to be
prepared with details of the material interfaces, boundaries and loads being well specified.
There are many books devoted exclusively to the subject of mesh generation but we feel
that the essence of dealing with this difficult problem should be included here for those
who wish to have a complete ‘encyclopedic’ knowledge of the subject.
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The chapter on computational methods is much reduced by transferring the computer
source program and user instructions to a web site.t This has the very substantial advantage
of not only eliminating errors in program and manual but also in ensuring that the readers
have the benefit of the most recent version of the program available at all times.

The two further volumes form again separate books and here we feel that a completely
different audience will use them. The first of these is entitled The Finite Element Method
in Solid and Structural Mechanics and the second is a text entitled The Finite Element
Method in Fluid Dynamics, Each of these two volumes is a standalone text which provides
the full knowledge of the subject for those who have acquired an introduction to the finite
element method through other texts. Of course the viewpoint of the authors introduced in
this volume will be continued but it is possible to start at a different point.

We emphasize here the fact that all three books stress the importance of considering the
finite element method as a unique and whole basis of approach and that it contains many of
the other numerical analysis methods as special cases. Thus, imagination and knowledge
should be combined by the readers in their endeavours.

The authors are particularly indebted to the International Center of Numerical Methods in
Engineering (CIMNE) in Barcelona who have allowed their pre- and post-processing code
(GiD) to be accessed from the web site. This allows such difficult tasks as mesh generation
and graphic output to be dealt with efficiently. The authors are also grateful to Professors
Eric Kasper and Jose Luis Perez-Aparicio for their careful scrutiny of the entire text and
Drs Joaquim Peir6 and C.K. Lee for their review of the new chapter on mesh generation.

Resources to accompany this book

Worked solutions to selected problems in this book are available online for teachers and
lecturers who either adopt or recommend the text. Please visit http:/books.elsevier.com/
manuals and follow the registration and log in instructions on screen.

OCZ, RLT and JZZ

 Complete source code and user manual for program FEAPpv may be obtained at no cost from the publisher’s
web page: http://books.elsevier.com/companions or from the authors’ web page: http://www.ce.berkeley.edu/~rlt
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